Performance Evaluation of Gas-Steam Combined Cycle Having Transpiration Cooled Gas Turbine

  • Sanjay Kumar Harcourt Butler Technological Institute, Kanpur, India
  • Onkar Singh Mechanical Engineering Department at Harcourt Butler Technological Institute, Kanpur, India
Keywords: combined cycle, temperature inlet temperatures, transpiration cooling, dual pressure HRSG, performance analysis

Abstract

In recent years improved gas turbine performance through developments in high temperature materials and blade cooling methods has made a positive impact on the combined cycle performance. Transpiration cooling technique has emerged as the most promising technique to improve the gas turbine cycle performance by allowing higher turbine inlet temperatures. This paper concentrates on improving the combined cycle performance by allowing higher turbine inlet temperatures (TIT) using transpiration cooling of gas turbine blades. A four-stage advanced gas turbine coupled with the dual pressure steam bottoming cycle is considered for the performance of combined cycle. Realistic input parameters used in current industrial practice have been considered for this study. The effects of variation of TIT on the performances of topping, bottoming and combined cycle are presented and discussed. For the combined cycle with transpiration cooled gas turbine an increase in TIT from 1600 K to 1800 K exhibits the combined cycle efficiency increase by 2.37 percent and the combined specific work increases by 185.42 kJ/kg. The results indicate that at a TIT of 1800 K the achievable efficiency of combined cycle with transpiration cooled gas turbine is 59.97 percent.

Author Biographies

Sanjay Kumar, Harcourt Butler Technological Institute, Kanpur, India

Sanjay Kumar, is working as Teacher Fellow at Harcourt Butler Technological Institute, Kanpur, India. He has been graduated from BIET, Jhansi and postgraduated from HBTI, Kanpur. He has been awarded the Fellowship by Gautam Buddh Technical University, Lucknow, India and has been teaching for last five years in the Department of Mechanical Engg. at HBTI, Kanpur. He is a member of The Institution of Engineers (India). His area of interest is thermal power engineering and design. E-mail: sanjaykumarkanpur@gmail.com.

Onkar Singh, Mechanical Engineering Department at Harcourt Butler Technological Institute, Kanpur, India

Onkar Singh, Ph.D., is Professor and Head of the Mechanical Engineering Department at Harcourt Butler Technological Institute, Kanpur, India. He has been graduated from HBTI, Kanpur and has completed his postgraduation and Ph.D. from MNNIT, Allahabad. Dr. Singh is a fellow of The Institution of Engineers (India). Dr. Singh specializes in thermal power engineering. E-mail: onkpar@rediffmail.com.

References

Sanjay, Singh, O., Prasad, B.N., “Influence of different means of turbine blade

cooling on the thermodynamic performance of combined cycle,” Elsevier, Applied

Thermal Engineering, Volume 28, 2008, pp. 2315-2326.

Sanjay, Singh, O., Prasad, B.N., “Thermodynamic modeling and simulation of

advanced combined cycle for performance enhancement,” J. Power and Energy Proc.

IMechE, Vol. 222 Part A:, 2008, pp. 541-555.

Sanjay Kumar and Singh, O., “Thermodynamic evaluation of different gas turbine

blade cooling techniques,” IEEE Xplore Conference Proceedings-Second International

Conference on Thermal Issues in Emerging Technologies, 2008. ThETA ‘08’;

-244 (Digital Object Identifier 10.1109/THETA.2008.5167172).

Polezhaev, J., “The transpiration cooling for blades of high temperatures gas turbine,”

Pergamon, Enegy Convers. Mgmt., Volume 38, 1997, pp. 1123-1133.

Horlock, J.H., Watson, D.T., Jones T.V., “Limitations on gas turbine performance

imposed by large turbine cooling flows,” ASME Journal of Engineering For Gas

Turbines and Power, Volume 123, 2001, pp. 487-494.

Kumar, S. and Singh, O., “Thermodynamic performance evaluation of gas turbine

cycle with transpiration cooling of blades using air vis-à-vis steam,” Proc. IMechE,

Part A: J. Power and Energy, 224 (A8), 2009, 1039-1047. DOI 10.1243/09576509JPE964

Srinivas, T., “Thermodynamic modeling and optimization of multi-pressure heat

recovery steam generator in combined power cycle,” Journal of Scientific and Industrial

Research, Volume 67, 2008, pp. 827-834.

Bassily, A.M., “Modelling and numerical optimization of dual- and triple-pressure

combined cycles,” Proc. IMechE, Part A: J. Power and Energy, 218, 2004, 97-109.

Chin, W.W. and El-Masri, M.A., “Exergy analysis of combined cycles: part 2 –

Analysis and optimization of two-pressure steam bottoming cycles,” ASME Journal

of Engineering For Gas Turbines and Power, Volume 109, 1987, pp. 237-243.

Kumar, S. and Singh, O., “Performance evaluation of transpiration cooled gas

turbine for different coolants and permissible blade temperatures considering the

effect of radiation,” Proc. IMechE, Part A: J. Power and Energy, 225, 1156-1165. DOI

1177/0957650911404305.

Section
Articles