Clinical Potential of miRNAs in Human and Infectious Diseases

  • Malak Haidar Pathogen Genomics Laboratory, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal-23955- 6900, Kingdom of Saudi Arabia
  • Gordon Langlsey Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, France.
Keywords: micro-RNA, cancer, infectious diseases,, parasites, Toxoplasma, Plasmodium, Theileria


MicroRNAs (miRNAs) are small non-coding RNA molecules that play critical roles in human disease. Several miRnome profiling studies have identified miRNAs deregulated in cancer and infectious diseases and miRNAs are also involved in regulation of the host response to infection. Thereby, the usage of miRNAs as biomarkers and potential treatments for both human and infectious diseases is under development. This review will provide insights into the contribution of miRNAs to pathogenesis and disease development and will present a general outline of the potential use of miRNAs as therapeutic tools.


Download data is not yet available.

Author Biographies

Malak Haidar, Pathogen Genomics Laboratory, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal-23955- 6900, Kingdom of Saudi Arabia

Malak Haidar obtained a M.Sc. in Integrative Biology from AgroParisTech University, Paris and a Ph.D. in Microbiology from the University of Paris- Descartes, France. Dr. Haidar is currently working at the Unit of Liver & Pancreas Differentiation at the Institut de Duve, Université Catholique de Louvain. Her current research is in the molecular and cellular biology of Cancer. Dr. Haidar previously worked in the Department of Bioscience, King Abdullah University of Science and Technology in Saudia Arabia, where studied host-pathogen interactions of Theileria annulata examining how different autocrine loops, oxidative stress and epigenetic landscape changes impact on pathogenicity.

Gordon Langlsey, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, France.

Gordon Langsley is an Emeritus Professor in the Department of Immunology, Inflammation and Infection at the Cochin Institute – Inserm U1016, part of the Medical Faculty of the University of Paris-Descartes. His interest is in host-pathogens interactions of Plasmodium falciparum, the causative agent of human malaria, and Theileria annulata, causative agent of tropical theileriosis. His focus has been on how the presence of these intracellular pathogens impacts their host cells (erythrocytes and leukocytes, respectively) and how this underpins disease virulence.


Carninci, P., J. Yasuda, and Y. Hayashizaki, Multifaceted mammalian

transcriptome. Curr Opin Cell Biol, 2008. 20(3): p. 274–80.

Shamovsky, I. and E. Nudler, Gene control by large noncoding RNAs.

Sci STKE, 2006. 2006(355): p. pe40.

Yazgan, O. and J.E. Krebs, Noncoding but nonexpendable: transcriptional

regulation by large noncoding RNA in eukaryotes. Biochem Cell

Biol, 2007. 85(4): p. 484–96.

Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic

gene lin-4 encodes small RNAs with antisense complementarity to

lin-14. Cell, 1993. 75(5): p. 843–54.

Guil, S. and M. Esteller, DNA methylomes, histone codes and miRNAs:

tying it all together. Int J Biochem Cell Biol, 2009. 41(1): p. 87–95.

Ma, F., et al., MicroRNA-466l upregulates IL-10 expression in

TLR-triggered macrophages by antagonizing RNA-binding protein

tristetraprolin-mediated IL-10 mRNA degradation. J Immunol, 2010.

(11): p. 6053–9.

Hussain, M., et al., Wolbachia uses host microRNAs to manipulate host

gene expression and facilitate colonization of the dengue vector Aedes

aegypti. Proc Natl Acad Sci USA, 2011. 108(22): p. 9250–5.

Henke, J.I., et al., microRNA-122 stimulates translation of hepatitis C

virus RNA. EMBO J, 2008. 27(24): p. 3300–10.

Alvarez-Garcia, I. and E.A. Miska, MicroRNA functions in animal development

and human disease. Development, 2005. 132(21): p. 4653–62.

Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function.

Cell, 2004. 116(2): p. 281–97.

Baranwal, S. and S.K. Alahari, miRNA control of tumor cell invasion

and metastasis. Int J Cancer, 2010. 126(6): p. 1283–90.

Esquela-Kerscher, A. and F.J. Slack, Oncomirs – microRNAs with a role

in cancer. Nat Rev Cancer, 2006. 6(4): p. 259–69.

Eulalio, A., L. Schulte, and J. Vogel, The mammalian microRNA

response to bacterial infections. RNA Biol, 2012. 9(6): p. 742–50.

Staedel, C. and F. Darfeuille, MicroRNAs and bacterial infection. Cell

Microbiol, 2013. 15(9): p. 1496–507.

Cullen, B.R., Viruses and microRNAs: RISCy interactions with serious

consequences. Genes Dev, 2011. 25(18): p. 1881–94.

LaMonte, G., et al., Translocation of sickle cell erythrocyte microRNAs

into Plasmodium falciparum inhibits parasite translation and contributes

to malaria resistance. Cell Host Microbe, 2012. 12(2):

p. 187–99.

Fernandez-Hernando, C., et al., MicroRNAs in metabolic disease. Arterioscler

Thromb Vasc Biol, 2013. 33(2): p. 178–85.

Plank, M., et al., Targeting translational control as a novel way to

treat inflammatory disease: the emerging role of microRNAs. Clin Exp

Allergy, 2013. 43(9): p. 981–99.

Shenouda, S.K. and S.K. Alahari, MicroRNA function in cancer: oncogene

or a tumor suppressor? Cancer Metastasis Rev, 2009. 28(3–4):

p. 369–78.

Tao, G. and J.F. Martin, MicroRNAs get to the heart of development.

Elife, 2013. 2: p. e01710.

Wang, W., E.J. Kwon, and L.H. Tsai, MicroRNAs in learning, memory,

and neurological diseases. Learn Mem, 2012. 19(9): p. 359–68.

Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers.

Nat Rev Cancer, 2006. 6(11): p. 857–66.

Garzon, R., G.A. Calin, and C.M. Croce, MicroRNAs in Cancer. Annu

Rev Med, 2009. 60: p. 167–79.

Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor

suppressor gene in human hepatocellular cancer. Gastroenterology,

133(2): p. 647–58.

Calin, G.A. and C.M. Croce, Chronic lymphocytic leukemia: interplay

between noncoding RNAs and protein-coding genes. Blood, 2009.

(23): p. 4761–70.

Calin, G.A., et al., MicroRNA profiling reveals distinct signatures in B

cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA, 2004.

(32): p. 11755–60.

Eis, P.S., et al., Accumulation of miR-155 and BIC RNA in human B cell

lymphomas. Proc Natl Acad Sci USA, 2005. 102(10): p. 3627–32.

Poliseno, L., et al., Identification of the miR-106b25 microRNA cluster

as a proto-oncogenic PTEN-targeting intron that cooperates with its

host gene MCM7 in transformation. Sci Signal, 2010. 3(117): p. ra29.

Volinia, S., et al., A microRNA expression signature of human solid

tumors defines cancer gene targets. Proc Natl Acad Sci USA, 2006.

(7): p. 2257–61.

Lee, E.J., et al., Expression profiling identifies microRNA signature in

pancreatic cancer. Int J Cancer, 2007. 120(5): p. 1046–54.

Yanaihara, N., et al., Unique microRNA molecular profiles in lung

cancer diagnosis and prognosis. Cancer Cell, 2006. 9(3): p. 189–98.

Bommer, G.T., et al., p53-mediated activation of miRNA34 candidate

tumor-suppressor genes. Curr Biol, 2007. 17(15): p. 1298–307.

Chang, T.C., et al., Transactivation of miR-34a by p53 broadly influences

gene expression and promotes apoptosis. Mol Cell, 2007. 26(5):

p. 745–52.

Starczynowski, D.T., et al., Identification of miR-145 and miR-146a

as mediators of the 5q- syndrome phenotype. Nat Med, 2010. 16(1):

p. 49–58.

Mongroo, P.S. and A.K. Rustgi, The role of the miR-200 family

in epithelial-mesenchymal transition. Cancer Biol Ther, 2010. 10(3):

p. 219–22.

Gebeshuber, C.A., K. Zatloukal, and J. Martinez, miR-29a suppresses

tristetraprolin, which is a regulator of epithelial polarity and metastasis.

EMBO Rep, 2009. 10(4): p. 400–5.

Shaham, L., et al., MiR-125 in normal and malignant hematopoiesis.

Leukemia, 2012. 26(9): p. 2011–8.

Sun, Y.M., K.Y. Lin, and Y.Q. Chen, Diverse functions of miR-125

family in different cell contexts. J Hematol Oncol, 2013. 6: p. 6.

Kumar, M., et al., MicroRNA let-7 modulates the immune response to

Mycobacterium tuberculosis infection via control of A20, an inhibitor of

the NF-kappaB pathway. Cell Host Microbe, 2015. 17(3): p. 345–56.

Izar, B., et al., microRNA response to Listeria monocytogenes infection

in epithelial cells. Int J Mol Sci, 2012. 13(1): p. 1173–85.

Mun, J., et al., MicroRNA-762 is upregulated in human corneal epithelial

cells in response to tear fluid and Pseudomonas aeruginosa antigens

and negatively regulates the expression of host defense genes encoding

RNase7 and ST2. PLoS One, 2013. 8(2): p. e57850.

Yang, K., et al., miR-155 suppresses bacterial clearance in Pseudomonas

aeruginosa-induced keratitis by targeting Rheb. J Infect Dis,

210(1): p. 89–98.

de Vries,W. and B. Berkhout, RNAi suppressors encoded by pathogenic

human viruses. Int J Biochem Cell Biol, 2008. 40(10): p. 2007–12.

Pedersen, I.M., et al., Interferon modulation of cellular microRNAs as

an antiviral mechanism. Nature, 2007. 449(7164): p. 919–22

Zeiner, G.M., et al., Toxoplasma gondii infection specifically increases

the levels of key host microRNAs. PLoS One, 2010. 5(1): p. e8742.

Shapira, S., et al., Suppression of NF-kappaB activation by infection

with Toxoplasma gondii. J Infect Dis, 2002. 185 Suppl 1: p. S66–72.

Cai, Y., et al., STAT3-dependent transactivation of miRNA genes following

Toxoplasma gondii infection in macrophage. Parasit Vectors, 2013.

: p. 356.

Cannella, D., et al., miR-146a and miR-155 delineate a MicroRNA

fingerprint associated with Toxoplasma persistence in the host brain.

Cell Rep, 2014. 6(5): p. 928–37.

Coulson, R.M., N. Hall, and C.A. Ouzounis, Comparative genomics

of transcriptional control in the human malaria parasite Plasmodium

falciparum. Genome Res, 2004. 14(8): p. 1548–54.

Hall, N., et al., A comprehensive survey of the Plasmodium life cycle

by genomic, transcriptomic, and proteomic analyses. Science, 2005.

(5706): p. 82–6.

Rathjen, T., et al., Analysis of short RNAs in the malaria parasite and its

red blood cell host. FEBS Lett, 2006. 580(22): p. 5185–8.

Wurtz, N., et al., cAMP-dependent protein kinase from Plasmodium

falciparum: an update. Parasitology, 2011. 138(1): p. 1–25.

Cohen, A., V. Combes, and G.E. Grau, MicroRNAs and Malaria – A

Dynamic Interaction Still Incompletely Understood. J Neuroinfect Dis,


Mantel, P.Y., et al., Infected erythrocyte-derived extracellular vesicles

alter vascular function via regulatory Ago2-miRNA complexes in

malaria. Nat Commun, 2016. 7: p. 12727.

Wang, Z., et al., Red blood cells release microparticles containing

human argonaute 2 and miRNAs to target genes of Plasmodium falciparum.

Emerg Microbes Infect, 2017. 6(8): p. e75.

Chamnanchanunt, S., et al., Downregulation of plasma miR-451 and

miR-16 in Plasmodium vivax infection. Exp Parasitol, 2015. 155:

p. 19–25.

Delic, D., et al., Hepatic miRNA expression reprogrammed by Plasmodium

chabaudi malaria. Parasitol Res, 2011. 108(5): p. 1111–21.

Hentzschel, F., et al., AAV8-mediated in vivo overexpression of miR-155

enhances the protective capacity of genetically attenuated malarial

parasites. Mol Ther, 2014. 22(12): p. 2130–41.

Marsolier, J., et al., OncomiR addiction is generated by a miR-155

feedback loop in Theileria-transformed leukocytes. PLoS Pathog, 2013.

(4): p. e1003222.

Gillan, V., et al., Characterisation of infection associated microRNA and

protein cargo in extracellular vesicles of Theileria annulata infected

leukocytes. Cell Microbiol, 2019. 21(1): p. e12969.

Haidar, M., et al., miR-126-5p by direct targeting of JNK-interacting

protein-2 (JIP-2) plays a key role in Theileria-infected macrophage

virulence. PLoS Pathog, 2018. 14(3): p. e1006942.

Abelson, J.F., et al., Sequence variants in SLITRK1 are associated with

Tourette’s syndrome. Science, 2005. 310(5746): p. 317–20.

Porkka, K.P., et al., MicroRNA expression profiling in prostate cancer.

Cancer Res, 2007. 67(13): p. 6130–5.

Qi, J., et al., Circulating microRNAs (cmiRNAs) as novel potential

biomarkers for hepatocellular carcinoma. Neoplasma, 2013. 60(2):

p. 135–42.

Wang, X.F., C.Z. Lu, and D.S. Xia, [Intravascular ultrasonic evaluation

of poststenting atherosclerotic plaque redistribution and lumen reduction

at the stent edge: does stent length matter?]. Zhonghua Xin Xue

Guan Bing Za Zhi, 2008. 36(6): p. 481–4.

Biswas, S., MicroRNAs as Therapeutic Agents: The Future of the Battle

Against Cancer. Curr Top Med Chem, 2018. 18(30): p. 2544–54.

Elfimova, N., et al., Circulating microRNAs: promising candidates serving

as novel biomarkers of acute hepatitis. Front Physiol, 2012. 3:

p. 476.

Hu, W., et al., Functional miRNAs in breast cancer drug resistance.

Onco Targets Ther, 2018. 11: p. 1529–41.

Li, Y.J., et al., Alterations of serum levels of BDNF-related miRNAs in

patients with depression. PLoS One, 2013. 8(5): p. e63648.

Wang, J., et al., Circulating microRNAs are promising novel biomarkers

for drug-resistant epilepsy. Sci Rep, 2015. 5: p. 10201.

Weir, D.W., A. Sturrock, and B.R. Leavitt, Development of biomarkers

for Huntington’s disease. Lancet Neurol, 2011. 10(6): p. 573–90.

Dong, Y., et al., Prognostic significance of miR-126 in various cancers:

a meta-analysis. Onco Targets Ther, 2016. 9: p. 2547–55.

Bader, A.G., D. Brown, and M. Winkler, The promise of microRNA

replacement therapy. Cancer Res, 2010. 70(18): p. 7027–30.

Czech, M.P., MicroRNAs as therapeutic targets. N Engl J Med, 2006.

(11): p. 1194–5.

Rupaimoole, R. and F.J. Slack, MicroRNA therapeutics: towards a new

era for the management of cancer and other diseases. Nat Rev Drug

Discov, 2017. 16(3): p. 203–22.

Stenvang, J., et al., Inhibition of microRNA function by antimiR oligonucleotides.

Silence, 2012. 3(1): p. 1.

Wiggins, J.F., et al., Development of a lung cancer therapeutic based

on the tumor suppressor microRNA-34. Cancer Res, 2010. 70(14):

p. 5923–30.

Liu, C., et al., The microRNA miR-34a inhibits prostate cancer stem

cells and metastasis by directly repressing CD44. Nat Med, 2011. 17(2):

p. 211–5.

Trang, P., et al., Systemic delivery of tumor suppressor microRNA mimics

using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther,

19(6): p. 1116–22.

Kota, J., et al., Therapeutic microRNA delivery suppresses tumorigenesis

in a murine liver cancer model. Cell, 2009. 137(6): p. 1005–17.

Cortez, M.A., et al., Therapeutic delivery of miR-200c enhances

radiosensitivity in lung cancer. Mol Ther, 2014. 22(8): p. 1494–1503.

Calin, G.A., et al., MiR-15a and miR-16-1 cluster functions in human

leukemia. Proc Natl Acad Sci USA, 2008. 105(13): p. 5166–71.

Ma, L., et al., Therapeutic silencing of miR-10b inhibits metastasis in a

mouse mammary tumor model. Nat Biotechnol, 2010. 28(4): p. 341–7.

Park, J.K., et al., miR-221 silencing blocks hepatocellular carcinoma

and promotes survival. Cancer Res, 2011. 71(24): p. 7608–16.

Rupaimoole, R., et al., Hypoxia-upregulated microRNA-630 targets

Dicer, leading to increased tumor progression. Oncogene, 2016. 35(33):

p. 4312–20.

Correia, C.N., et al., Circulating microRNAs as Potential Biomarkers of

Infectious Disease. Front Immunol, 2017. 8: p. 118.

Drury, R.E., D. O’Connor, and A.J. Pollard, The Clinical Application of

MicroRNAs in Infectious Disease. Front Immunol, 2017. 8: p. 1182.

Jopling, C.L., et al., Modulation of hepatitis C virus RNA abundance by

a liver-specific MicroRNA. Science, 2005. 309(5740): p. 1577–81.

Elmen, J., et al., Antagonism of microRNA-122 in mice by systemically

administered LNA-antimiR leads to up-regulation of a large set of

predicted target mRNAs in the liver. Nucleic Acids Res, 2008. 36(4):

p. 1153–62.

Ho, B.C., et al., Inhibition of miR-146a prevents enterovirus-induced

death by restoring the production of type I interferon. Nat Commun,

5: p. 3344.

Tay, H.L., et al., Antagonism of miR-328 increases the antimicrobial

function of macrophages and neutrophils and rapid clearance of nontypeable

Haemophilus influenzae (NTHi) from infected lung. PLoS

Pathog, 2015. 11(4): p. e1004549.

Alexander, M., et al., Exosome-delivered microRNAs modulate the

inflammatory response to endotoxin. Nat Commun, 2015. 6: p. 7321.

Zhang, T., et al., Salmonella enterica serovar enteritidis modulates

intestinal epithelial miR-128 levels to decrease macrophage recruitment

via macrophage colony-stimulating factor. J Infect Dis, 2014. 209(12):

p. 2000–11.

Research Article