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Abstract

Run Out Tables (ROTs) are critical in the metallurgical sector for producing
unique steel grade. The cooling rate controls the fine structure of steel, which
is influenced by a number of factors such as the convective heat transfer
coefficient, mean film temperature and many others. As a result, achieving a
new steel grade necessitates the optimum combination of all of these factors.
The cooling rate as a function of steel characteristics is obtained employing
laboratory data such as convective heat transfer coefficient, mean film temper-
ature, and mass flow rate of coolant at preset upper and lower nozzle distances
from the experimental setup. Three Artificial Neural Network programs have
been used to validate and check the performance of the experimental setup
for optimize the cooling rate.
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1 Introduction

In recent decades, researchers have focused on ROTs and cooling rate control
to analyze various steel qualities. A computational model using the two-
dimensional elastoplastic finite element technique was created by Heung
Nam Han et al. [1] in order to analyse the deformation behaviour of steels
on an ROT of a hot strip mill. Various model based studies have been
done to predict and simulate various parameters like temperature variation,
phase transformation behaviour, and cooling rate with help of different
software and tools [2–6]. Residual stress emerges as a significant research
problem in the chilling of the hot sliver on the run-out table where mechanical
and micro structural coupling analysis methodology is used in conjunction
with ABAQUS finite element software to predict flatness change [7–9].
GA Optimization of ROT parameters have also been attempted in recent
past [10]. Sudhansu Mohan Padhya et al. [11] investigated the impact of
nozzle placement on the ultrafast cooling of steel segments. They designed
an experimental facility to examine the influence of nozzle alignment on the
thermal performance of steel plate cooling by air-water spray impingement.
The spray cooling apparatus was designed specifically for measuring the
heat transfer characteristics of the heating plate. P. Bhattacharya et al. [12]
used the droplet evaporation duration of a single droplet encroaching on a
hot carbon steel strip surface to figure out the strip cooling rate feasible in
the Run out Table of Hot Strip Mill via spray evaporative cooling. Their
suggested analytical model predicts that it is possible to obtain the ultra-
high cooling rate of Ultra Fast Cooling through spray evaporative cooling
by reducing droplet size appropriately, and the analytical model has been
validated through CFD simulation. Cooling mechanism of ROT and flatness
of strip becomes an important area of research where LIU En-yang et al. [13]
detailed the cooling process of Ultra Fast cooling and laminar cooling of
ROT, in addition to the control model, in which it was shown that UFC
does not affect the flatness of the strips The length of the run-out table
as well as the rate of cooling in run-out tables are studied by Sudhansu
M. Padhy et al. [14] in the context of various cooling mechanisms where
rate of cooling effect on rolled product, modeling of cooling process and
cooling technique studies by various researcher’s has been described. Siamak
Serajzadeh [15] designed a mathematical model with the aid of the governing
heat conduction–convection equation to analyze the temperature history of
low-carbon steel on the run-out table during continuous cooling.

Therefore, based on the aforementioned research, it has been determined
that the cooling rate in ROT plays a significant role in achieving the desirable



Modelling of Artificial Neural Network to Validate the Experimental Data 209

steel quality. The aforementioned factors motivate the research and necessi-
tate a more comprehensive investigation into heat transfer during cooling in
ROT. Also in industries, it is a regular practice to have a different microstruc-
ture of steel using Run Out Tables. ROTs incorporate essential factors such
as velocity of specimen plate, convective heat transfer coefficient, mean film
temperature, spacing of nozzle bank, mass flow rate of cooling agent and
many others that influence the microstructure of the steel. Since this cooling
process promotes thermo-metallurgical phase transformation, the cooling rate
is a key factor in attaining desirable mechanical characteristics in steel.
For Ultra-Fast Cooling, mass flow rate of cooling agent impinging on a
consistently spread surface area of a moving steel plate is used in these
laboratory-scale ROTs.

Artificial Neural Network has played an important role in research work
for a long time. Heat transmissions in heat exchangers and thermal energy
storage systems have both been studied using Artificial Neural Networks
(ANNs) [16, 17]. In heat exchanger of refrigeration application, ANN has
been applied to analyze its heat rate [18]. Several techniques have been
applied in the context of the Artificial Neural Network to forecast def-
erent parameters like heat transfer rate, heat transfer coefficient, density,
porosity, hardness and others [19–21]. Also in squeeze casting process a
Neural Network technique has been successfully applied to simulate thermal
performance of a heat exchanger as well as to construct the input-output
connection [22, 23]. Aside from the research mentioned above, Artificial
Neural Networks (ANNs) can be utilized effectively for experimental data
validation in various disciplines where ANNs can be used to validate sensor
data. By training the network on a large dataset of sensor readings and
their corresponding ground truth values, the network can learn to recognize
anomalies, errors, and inconsistencies in sensor data. ANNs can aid in the
validation of scientific experiment results. Using known experimental data to
train neural networks, researchers can then use the trained network to validate
the results of new experiments. By learning from big datasets and identifying
trends or deviations from predicted behaviours, ANNs may validate experi-
mental results. This helps researchers verify data and experimental findings
correctness, dependability, and quality.

Various laboratory-scale ROT data sets have been utilized in the current
investigation. Within the parameters of this research project, an endeavour
was made to validate the experimental data collected to optimize the cooling
rate. Several experimental data, including the convective heat transfer coeffi-
cient, the mass flow rate of refrigerant, and the mean film temperature, were
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utilized as input parameters, with the rate of cooling serving as the output
parameter. Three distinct artificial neural network training strategies were
utilized to train the experimental results in order to validate the performance
of the experimental setup for optimize the cooling rate.

2 System Description

The salient features of ROTs are presented in this section. It incorporates a
furnace for heating the work specimen plate, an electro-hydraulic actuation
system which will provide a reciprocating motion to the specimen plate,
upper nozzle bank and lower nozzle bank with water and air cooling facility,
the fixture with roller fitted rail on which the specimen plate will continue
its reciprocating motion between upper nozzle bank and lower nozzle bank
and a mechanical handling unit arrangement between furnace and cooling
table. To achieve a specific beginning temperature, a mild steel plate with
dimensions of 597 mm × 202 mm × 6 mm is heated in a sealed compartment
type furnace with 18 Silicon Carbide heating components. The furnace,
which has dimensions of 800 mm × 800 mm × 300 mm, is capable of
providing a maximum core temperature of 1200◦C. An automatic PID type
programmable temperature indicating controller is used to control the heating
process. The specimen plate is manually loaded on top of rails and placed
between cooling bays having ten circular nozzles on each sides of the plate.
When the globe valve is opened, pressurised air from an air compressor
enters the air circuit and sprays air from both sides onto the plate surface.
To detect temperature across the surface of the plate, eight k-type thermo-
couples are installed on the mild steel plate. The thermocouple signals are
routed to a c-RIO software-hardware interface device, which records and
stores temperature versus time data on the computer employing LabVIEW
software.

3 Network Model

Following the biological nervous system, a computer system or a Network
composed of Artificial Neurons is modelled, where a nonlinear and com-
plex link between input and output parameters is addressed using modern
computing techniques. The algorithm expresses the neurons output signals
as a function of their input signals. In such an Artificial Neural Network
(ANN) model, the input vectors are multiplied by their respective weights
and supplied to the summing function, which adds the bias value to generate
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the net input [24]. After feeding data to the transfer function, the output is
generated.

To train the experimental data in this study, three Neural Network tech-
niques (Network – 1, 2 and 3) have been employed with distinct combinations
of training, adaptation, and performance functions. Both in Network-1 and
Network-3, ‘Feed-forward backpropagation’, ‘RAINLM’, ‘MSE’, ‘TANSIG’
and ‘PURELIN’ have been used respectively as network type, training func-
tion, performance function, properties for layer-1 and properties for layer-2.
For Network-1 ‘LEARNGD’ has been used as an adaptation function while
‘LEARNGDM’ has been used for Network-3. In Network-2,‘Rectified Linear
activation function (ReLU)’ has been used with three hidden layers.

The ANN models Network-1 and Network-3 have single input layer,
single hidden layer and single output layer, each with twenty neurons in the
hidden layer and one neuron in the output layer. The input matrix X of size
3 × 1 represents the feature values convective heat transfer coefficient, mean
film temperature, and mass flow rate of cooling air. Let W1 be the weight
matrix and B1 be the bias matrix of the hidden layer. W1 is the matrix of size
20 × 3. Thus, multiplying W1 with X gives a matrix of size 20 × 1. B1 is
also a matrix of size 20 × 1. So the intermediate output of the hidden layer
can be written in the form of a matrix as,

Z1 = W1X +B1 (1)

The intermediate output is passed through a TANSIG function and is
transformed to

O1 = F1(Z1) = F1(W1X +B1) (2)

In the output layer, the weight matrix is W2(1 × 20) and the bias matrix
is B2(1× 1).

The intermediate output is calculated to be,

Z2 = W2O1 +B2 (3)

This equation is again transformed with the help of the PURELIN
Transfer function and the final relation can be given as,

O2 = F2(Z2) = F2(W2O1 +B2) (4)

O2 = F2[W2F1(W 1X +B1) +B2] (5)

So, Network output in the form of trained or predicted cooling rate can
be given as,

q = O2 = F2[W2F1(W 1X +B1) +B2]. (6)
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One input layer, three hidden layers, and one output layer comprise
Network-2. The input layer has 3 parameters namely convective heat transfer
coefficient, mean film temperature, and mass flow rate of air. The activation
function converts a node’s summed weighted input into that input’s activation
or output. The inputs are multiplied by the corresponding weights in a
given node and summed together. This value is then transformed through
an activation function. The ReLU is a piecewise linear function that outputs
directly if the input is positive and zero otherwise. ReLU is defined as,
f(x) = max(0, x).

The performance of the aforementioned networks has been analysed, with
the correlation coefficient (R) serving as a key evaluator of performance.
Mean Square Error (MSE) has also been an important factor when analysing
the Performance error of networks.

4 Results and Discussion

Three ANN techniques have been used for training and validation of experi-
mental data. To evaluate the performance of the network, cooling rate versus
convective heat transfer coefficient histories were used, along with their error.
In Figure 1 Cooling rate (q) is plotted against Convective Heat Transfer
Co-efficient (h) and in Figure 2 error plot is shown for Network-1 where the

Network 1 

Figure 1 Comparison between predicted and experimental cooling rate for Network-1.
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Network 1 

Figure 2 Error plot for Network-1.

Network 2 

Figure 3 Comparison between predicted and experimental cooling rate for Network-2.

Overall Co-efficient of Correlation (R) value is 0.9997 and the MSE value
is 0.00025. In Figure 3 Cooling rate (q) is plotted against Convective Heat
Transfer Co-efficient (h) and in Figure 4 error plot is shown for Network-
2 where the Overall Co-efficient of Correlation (R) value is 0.9993 and
MSE value is 0.00075. In Figures 5 and 6, similar plots are shown for
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Network 2 

Figure 4 Error plot for Network-2.

Network 3 

Figure 5 Comparison between predicted and experimental cooling rate for Network-3.

Network-3 where the Overall Co-efficient of Correlation (R) value is 0.9997
and the MSE value is 0.00045. In all the plots the ‘R’ values are found to
be much closed to unity. The projected and experimental cooling rates are
strongly overlapping which has been in Figures 1, 3 and 5 indicating the
correctness of all the neural trainings. The MSE value of Network-1 is less
than that of Network-2 and Network-3 which signifies that Network-1 is the



Modelling of Artificial Neural Network to Validate the Experimental Data 215

Figure 6 Error plot for Network-3.

most preferable to train the experimental data for optimize the cooling rate in
next step of this work.

5 Conclusion

Regardless of the fact that Artificial Neural Networks (ANNs) have certain
limitations for data validation, such as dependency on training data, over-
fitting, data distribution mismatch, etc., it is recommended to complement
ANNs with other validation techniques and domain expertise to ensure reli-
able and accurate data validation. An Artificial Neural Network based study
has been conducted to predict the cooling rate as function of varying the
convective heat transfer coefficient, the mass flow rate of cooling air and mean
film temperature around the heated plate at fixed upper and lower nozzle
bank distances. The findings of all three network models are quite near to one
another, which is an indication of the consistency of the experimental setup
and the data it produced, which may be utilized in the future to optimise the
cooling rate. Among the three models, Network-1 was determined to be the
most suitable option due to its considerable degree of correlation coefficient
(R = 0.9997), as well as its lesser mean square error (MSE = 0.00025). Thus,
it is possible to conclude that validation of the experimental data by network-
1 is preferable, leading to the future development of the task, i.e. optimization
of the cooling rate using validated experimental data.



216 P. Biswas et al.

Acknowledgements

M/s Tata Steel provided funding for the development of the set up. Jadavpur
University, as part of TEQIP Phase II, has offered financial assistance for the
creation of additional experimental facilities.

References

[1] H.N. Han, J. Lee, H.J. Kim, Y-S. Jin, ‘A model for deformation, temper-
ature and phase transformation behavior of steels on the run-out table
in hot strip mill’, Journal of Materials Processing Technology, Vol. 128,
pp. 216–225, 2002.

[2] X. Wang, F. Li, Q. Yang, A. He, ‘FEM analysis for residual stress
prediction in hot rolled steel strip during the run-out table cooling’,
Applied Mathematical Modelling, Vol. 37, pp. 586–609, 2013.

[3] A. Suebsomran, S. Butdee, ‘Cooling process on a run-out table by the
simulation method’, CAS Studies in Thermal Engineering 1, pp. 51–56,
2013.

[4] A. Mukhopadhyay, S. Sikdar, ‘Implementation of an online run-out table
model in a hot strip mill’, Journal of Materials Processing Technology,
Vol. 169, pp. 164–172, 2005.

[5] S. Serajzadeh, ‘Prediction of temperature variations and kinetics of
austenite phase change on the run-out table’, Materials Science and
Engineering A, Vol. 421, pp. 260–267, 2006.

[6] P. Suwanpinij, U. Prahl, W. Bleck, R. Kawalla, ‘Fast algorithms for
phase transformations in dual-phase steels on a hot strip mill run-out
table (ROT)’, Archives of Civil and Mechanical Engineering, Vol. 12,
pp. 305–311, 2012.

[7] D. Weisz-Patrault, T. Koedinger, ‘Residual stress on the run-out table
accounting for multiphase transitions and transformation induced plas-
ticity’, Applied Mathematical Modelling, Vol. 60, pp. 18–33, 2018.

[8] Z. Zhou, P.F. Thomson, Y.C. Lam, D.D.W. Yuen, ‘Numerical analysis of
residual stress in hot-rolled steel strip on the run-out table’, Journal of
Materials Processing Technology, Vol. 132, pp. 184–197, 2003.

[9] W. Xiao-dong, L. Fei, J. Zheng-yi, ‘Thermal, Microstructural and
Mechanical Coupling Analysis Model for Flatness Change Prediction
During Run-Out Table Cooling in Hot Strip Rolling’, Journal of Iron
and Steel Research, Vol. 19(9), pp. 43–51, 2012.



Modelling of Artificial Neural Network to Validate the Experimental Data 217

[10] A. Aditya, P. Sarkar and P. Mandal, ‘GA Optimization of Cooling
Rate of a Heated MS Plate in a Laboratory-Scale ROT’, Advances in
Materials, Mechanical and Industrial Engineering, pp. 631–648, 2019.

[11] Sudhansu Mohan Padhy, Purna Chandra Mishra, Ruby Mishra, Nozzle
positioning for ultra-fast cooling of steel strips in a run out Table,
Materials Today: Proceedings 5 (2018) 18656–18663.

[12] P. Bhattacharya, A.N. Samanta, S. Chakraborty, Spray evaporative cool-
ing to achieve ultra fast cooling in runout table, International Journal of
Thermal Sciences 48 (2009) 1741–1747.

[13] Liu En-yan, Peng Liang-gui, Yuan Guo, Wang Zhao-dong, Zhang Dian-
hua, Wang Guo-dong, Advanced run-out table cooling technology based
on ultra fast cooling and laminar cooling in hot strip mill, J. Cent. South
Univ. (2012) 19: 1341–1345, DOI: 10.1007/s11771-012-1147-6.

[14] Sudhansu M. Padhy, Achintya H. Kambli, Manoj Ukamanal, Purna
Chandra Mishra, Cooling mechanisms on run out table: A technical
review, Materials Today: Proceedings 5 (2018) 18162–18169.

[15] Siamak Serajzadeh, Prediction of temperature variations and kinetics
of austenite phase change on the run-out table, Materials Science and
Engineering A421 (2006) 260–267.

[16] G.N. Xie, Q.W. Wang, M. Zeng, L.Q. Luo, ‘Heat transferanalysis
for shell-and-tube heat exchangers with experimental data by artificial
neural networks approach’, Applied Thermal Engineering, Vol. 27,
pp. 1096–1104, 2007.

[17] K. Ermis, A. Erek, I. Dincer, ‘Heat transfer analysis of phase change
process in a finned-tube thermal energy storage system using artifi-
cial neural network’, International Journal of Heat and Mass Transfer,
Vol. 50, pp. 3163–3175, 2007.

[18] A. Pacheco-Vega, M. Sen, K.T. Yang, R.L. McClain, ‘Neural network
analysis of fin-tube refrigerating heat exchanger with limited experi-
mental data’, International Journal of Heat and Mass Transfer, Vol. 44,
pp. 763–770, 2001.

[19] Y. Islamoglu, ‘A new approach for the prediction of the heat transfer
rate of the wire-on-tube type heat exchanger – use of an artificial neural
network model’, Applied Thermal Engineering, Vol. 23, pp. 243–249,
2003.

[20] K. Jambunathan, S.L. Hartle, S. Ashforth-Frost and V.N. Fontama,
‘Evaluating convective heat transfer coefficients using neural net-
works’, International Journal of Heat and Mass Transfer, Vol. 39,
pp. 2329–2332, 1996.

10.1007/s11771-012-1147-6


218 P. Biswas et al.

[21] A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, ‘Prediction
of density, porosity and hardness in aluminum–copper-based com-
posite materials using artificial neural network’, Journal of Materials
Processing Technology, Vol. 209, pp. 894–899, 2009.

[22] C.K. Tan, J. Ward, S.J. Wilcox, R. Payne, ‘Artificial neural network
modelling of the thermal performance of a compact heat exchanger’,
Applied Thermal Engineering, Vol. 29, pp. 3609–3617, 2009.

[23] M. Patel G.C, A.K. Shettigarb, P. Krishnaa, M.B. Parappagoudarc,
‘Backpropagation genetic and recurrent neural network applications
in modelling and analysis of squeeze casting process’, Applied Soft
Computing, Vol. 59, pp. 418–437, 2017.

[24] P. Biswas, M.S. Mondal, S. Mookherjee, P. Mandal, ‘Modelling of
Artificial Neural Network to control the cooling rate of a Laboratory
Scale Run-Out Table’, MATEC Web of Conferences, Vol. 306:03004,
pp. 1–5, 2020.

Biographies

Prabir Biswas received B.Tech degree in Mechanical Engineering from
Kalyani Govt. Engineering College. Completed Master of Engineering from
Indian Institute of Engineering Science and Technology (IIEST) formally
known as BESU, Shibpur in 2010. Presently doing Ph.D. from Jadavpur
University. At the same time working as an Asst. Professor in Techno Inter-
national New Town, Kolkata.



Modelling of Artificial Neural Network to Validate the Experimental Data 219

Kaustav Chakraborty is a passionate engineer who graduated with a Bach-
elor’s degree in Mechanical Engineering from Jadavpur University, where
he achieved the distinction of being the salutatorian of his class. Currently
working as an engineer at CESC Limited., Fascination with physics dates
back to his school days. Throughout academic journey, he had the opportunity
to delve deeper into the realms of heat transfer, fluid mechanics, and even
gained exposure to data science during his undergraduate years.

Pratik Kumar Raha is a final year student of Bachelor’s of Engineering at
Jadavpur University Department of Mechanical Engineering. He is interested
in Thermal Engineering Applied fluid Mechanical.



220 P. Biswas et al.

Pranibesh Mandal is working as Assistant Professor of the Department of
Mechanical Engineering since January, 2014 in Jadavpur University, Kolkata,
India. He is currently doing research in Applied Aerodynamics, Underwater
Vehicle Design, Hydraulic Control, Experimental Fluid Mechanics and Heat
Transfer as well as other related fields.


	Introduction
	System Description
	Network Model
	Results and Discussion
	Conclusion

