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Abstract

The goal of this work is to provide an effective method for determining
the shortest path in random graphs, which are complicated networks with
random connectivity patterns. We have developed an algorithm that can
identify the shortest path for both weighted and unweighted random graphs
to accomplish our objective. As connectivity in these types of structures
is changing, the algorithm adjusts to different edge weights and node con-
figurations to provide fast and precise shortest path searching. The study
shows that the suggested method performs more successfully in finding the
shortest path throughout random graphs using comprehensive computations.
Many networks, including social networks, granular networks, road traffic
networks, etc., include nodes that can connect to one another and create
random graphs in the present-day computational era. The outcomes demon-
strate how flexible it is, which makes it a useful tool for practical uses in
domains where random graph structures are common, like transportation
networks, communication systems, and social networks. For illustration, we
have taken into consideration an actual case study of communication road
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networks here. We have determined the shortest path of the road networks
using our proposed algorithm, and the results have been presented. Better
decision-making across a range of areas is made possible by this study, which
advances effective algorithms designed for complicated and unpredictable
network environments.

Keywords: Random graph, shortest path, probability distribution, weighted
graph, unweighted graph.

1 Introduction

Over time, advancements in computation, optimization, and upgrading have
led to an increased focus on optimal path selection for networks since the
invention of the computer. There is a constant effort made by researchers
to implement the best path selection algorithm. Graph theory now plays a
significant part in the mathematical modeling of any network system. In 18th-
century Swiss mathematician Leonhard Euler introduced the key concept of
graph theory. The field of graph theory has been growing rapidly thereafter.
There are currently numerous areas of investigation in graph theory [1]. The
nomenclature of both nodes and edges is crucial for visually representing
a network. Examining brain networks is a major topic of scientific inquiry,
despite being represented by an undirected graph. Scientists and network
researchers have established the theory that brain networks might be a mixed
directional combination of directed and undirected [2]. Road networks are
another example of this type of system; some have a direction from a source to
a destination, while others have no direction at all. For notable contributions
to the analyses of various graph-related topics, one might refer to the works
of Thorup [3], Katerinis and Tsikopoulosk [4], Orlin et al. [5], Wang et al. [6],
Jicy and Mathew [7], Li and Li [8], Bonato et al. [9], Mohammed [10],
Sotskov [11], Deen et al. [12] etc. Additionally, several methods have been
developed that use graph theory to find a complex network’s shortest path.
The works of Triana and Syahputri [13], Sahoo et al. [14], Singh and
Mishra [15], Brodnik et al. [16], Ramadiani et al. [17] and others might be
consulted for additional information. Random graph (RG) is another term for
a different kind of specialized graph that is used in the literature [18, 19].
The pioneering work of Paul Erdõs and Alfréd Rényi, who established the
Erdõs-Rényi model [18] in the late 1950s, is the foundation of the study
of random graphs. Based on this approach, graphs with different levels of
connection are produced by assuming that edges between pairs of nodes have
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a probability distribution. Numerous random graph models, each capturing
distinct features of real-world networks, have been developed by researchers
since then. Hence, simply a probability distribution over graphs is commonly
referred to as random graphs in mathematics. A basic model for analyzing
the basic complexity and chaotic character of many real-world networks is
a random graph. Random graphs serve as mathematical representations of a
wide range of systems, including social networks, biological interactions, and
communication infrastructures. As such, they offer an invaluable foundation
for comprehending the emergent characteristics and activities of complex
structures. Models of random graphs (RGs) are essential to complex network
investigation. They support comprehension, management, and forecasting
of events that take place, for example, in biological, social, and Internet
networks. Basic bipartite networks, such as affiliation networks, and sim-
ple unipartite networks, such as acquaintance networks, are covered by the
models [20]. Caimo and Friel [21] have examined Bayesian inference for
estimating exponential random graph models (ERGMs), which are among the
most significant models in several study fields like social network analysis,
physics, and biology. Investigation has been done by Robins et al. [22]
on recent advances in exponential random graph (p∗) models for social
networks. In this study, they analyzed the work of Snijders et al. [23]
and show how they fit empirical network data better than homogeneous
Markov random graph models. Snijders conducted studies on Markov Chain
Monte Carlo Estimation of Exponential Random Graph (ERG) Models [24].
The Robbins-Monro algorithm for estimating a solution to the likelihood
equation serves as the foundation for the estimation procedures that are
taken into consideration when simulating this ERG model using Gibbs or
Metropolis Hastings sampling. Bollobás et al. [25] examined the diameter
of a scale-free random graph. In this study, a random network process has
been examined, in which vertices are linked to a fixed number m of earlier
vertices, once at a time, and each earlier vertex is selected with a probability
that is proportional to its degree. Aiello et al. [26] investigated a random
graph model for power law graphs. A model for random graphs has been
provided here, and it is essentially a particular instance of dense randomized
graphs with degree sequences that obey a power law. Log size and log-log
growth rate are two of the few parameters used in this approach. Nobari et al.
performed studies on fast random graph generation [27]. In this study, an
alternative data parallel approach for the Erdõs-Rényi model of random graph
generation has been proposed and implemented it in a graphics processing
unit (GPU). The weighted random graph (WRG) model has been introduced
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by Garlaschelli [28]. It is the weighted analogue of the Erdos–Renyi ran-
dom graph and offers basic understanding of complex weighted networks.
Garlaschelli also showed analytically that the geometric weight distribution,
binomial degree distribution, and negative binomial strength distribution are
basic features of the WRG. Janson et al. [29] explored bootstrap percolation
on the random graph Gn, p. The idea of average distance in a random graph
with predetermined predicted degrees has been studied by Chung and Lu [30].
Random graphs with clustering have been suggested by Newman et al. [31].
A network that exhibits transitivity, or the propensity for two neighbours of
a network node to also be neighbours of one another, or clustering, has a
long-standing challenge in network theory that has been resolved in this
study. It is important to mention that filtering random graphs plays a crucial
role in signal processing. Isufi et al. [32] have proposed filtering random
graph processes over random time-varying graphs. Space-time signal-to-
interference-and-noise-ratio (SINR) random graph optimum pathways have
been examined by Baccelli et al. [33]. When modeling packet transmissions
in wireless networks, these random graphs appear. A study on shortest paths
in graphs with random weights has been conducted by Hassin and Zemel [34].
The shortest pathways between every pair of nodes in a directed or undirected
complete graph with uniformly and independently distributed edge lengths
in [0, 1] have been taken into consideration. To identify the shortest paths
between given source/destination pairs while avoiding path overlaps at nodes,
De Bacco et al. [35] addressed shortest node-disjoint paths on random graphs.
A random graph is used to model how a molecular network forms from
multifunctional antecedents. A random graph approach to multifunctional
molecular networks has been suggested by Kryven et al. [36]. Floating
time is particularly important since all routers in a subnet or autonomous
domain must have the same, consistent picture of the network architecture
to provide high quality multimedia services like file transfers, real-time
video, telephone, etc. over an Internet like future network. Van Der Hofstad
et al. have suggested the flooding time in random graphs [37]. For wireless
actuator networks, Onat and Stojmenovic [38] examined the generation of
random graphs. It presents a preliminary investigation into the generation
of connected actuator graphs (CAG) using fast methods and what type of
desirable properties can be obtained in comparison with entirely random
networks, particularly for sparse node densities. Constrained random walks
on random graphs are suggested by Servetto and Barrenechea [39] as routing
algorithms for massive wireless sensor networks. Yang et al. [40] conducted
studies on link prediction in brain networks based on a hierarchical random
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graph model. Link prediction employs information about the brain network,
including node properties and observable links, to estimate the probability
that links exist between nodes. This study, which is based on a hierarchical
random graph model with maximum likelihood estimation, plays a significant
role in addressing the issue of the ineffectiveness of general link prediction
methods applied to brain networks. Klootwijk et al. [41] have looked at
the probabilistic analysis of optimization problems on generalized random
shortest path metrics. The primary goal of this research is to generalize
Erdős–Rényi random graphs. By providing separate random edge weights to
each edge in the graph and determining the length of a shortest path between
each pair of vertices with respect to the weights, one can develop a random
shortest path metric. Kivimäki et al. [42] have investigated advancements in
the theory of randomized shortest paths with a comparison of graph node
lengths. This paper extends the theory of a particular family of graph node
distances, based on statistical physics, called the randomized shortest path
dissimilarity. The significance of random graphs presented in this introduc-
tion, with a focus on how they may be used to describe complex connection
patterns and make it easier to analyze phenomena in which irregularity
is important. Most of the published works that have been presented here
have nothing to do with determining the shortest path for either directed
or undirected random graphs. Thus, we have attempted to put into practice
an algorithm that determines the shortest path of random graphs. Using our
suggested algorithm, we have found the shortest path of the road networks,
which are represented in terms of random graphs, and the results have been
displayed in this paper. For the sake of illustration, an actual case study has
also been solved and the outcomes have been provided.

2 Definition and Preliminaries

To develop the paper, we have provided a few definitions and explanations.
In this section, we have defined a few key terms related to our suggested
work and explained what they mean by way of notations. Notations and their
meaning have been displayed in Table 1.

Definition 2.1 (Random Graph)
In mathematics a random graph is a generic term for probability distributions
over graphs. The theory of random graphs lies in the boundary between graph
theory and probability theory. So, in general a graph G = (V,E) is a random
graph in which an edge (u, v) appears with certain probability values p.



58 L. Sahoo and R. Das

Table 1 Notation and their meaning
Notation Meaning
G = (V,E) It is the Graph with V number of vertices and E number of edges
(u, v) An edge between two vertices
G(N,L) It is a graph with N nodes and L links
G(N, p) It is a graph with N nodes with probability p of connecting a pair of

vertices
d = (V,W ) Denoted the distance
X ∼ N(µ, σ2) X is a random variable which follow normal distribution with mean µ and

standard deviation σ

Figure 1 Random Graph of G(N,L) Model with N = 12 and p = 1
6

.

Figure 2 Random graph for G(N, p) model.

2.1 Type of Random Networks/Graphs

In the random graph theory, generally, there are two types of random graphs
viz. G(N,L) Model and G(N, p) Model (see Figures 1 and 2). These two
models are as follows:

(i) G(N,L) Model: N labeled nodes are randomly connected to the L
Placed Link.

(ii) G(N, p) Model: N nodes with probability p of connecting a pair of
vertices L number of links from a random network generated according
to the G(N, p) model.
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Definition 2.2 (Shortest path)
A well-known idea in graph theory is the Shortest Path Algorithm. A path
with the smallest distance between two vertices (or nodes) is found using the
shortest path algorithm.

Shortest path of weighted Graph
If the Graph is weighted, it is a path with the minimum sum of edge weights.
The distance from the source vertex to the destination vertex is denoted by
d = (V,W ) where the path’s weight is represented by V and W .

Shortest path of unweighted Graph
In case of unweighted graphs, there will be no edge weights. In that case,
the shortest path P will become between the given two vertices with the
minimum number of edges. Let G = (V,E) be an undirected graph with
E edges and V vertices. Let P be the shortest path between any two vertices
in the Graph such that there is no other path between any two vertices whose
sum of edge weights is less than the sum of edge weights.

Definition 2.3 (Probability distribution)
A probability distribution is the mathematical function that provides a chance
of occurring for many possible experiment outcomes in probability theory
and statistics. Probability distributions are often represented using graphs or
probability tables. For example, X ∼ N(µ, σ2); X is a random variable
which follow normal distribution with mean µ and standard deviation σ.
Table 2 contains a list of some other type probability distributions.

Table 2 Some other type probability distributions

Distribution Description Example

Binomial Describes variables with two
possible outcomes. It is the
probability distribution of the
number of successes in n trials
with p probability of success.

The number of times a coin lands
on heads when you toss it five
times

Discrete uniform Describes events that have equal
probabilities.

The suit of a randomly drawn
playing card

Poisson Describes count data. It gives the
probability of an event
happening k number of times
within a given interval of time or
space.

The number of text messages
received per day
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3 Algorithm for Random Graph’s Shortest Path

We have presented an algorithm in this section to find a random graph’s
shortest path. There is no effort to determine the shortest path of a random
graph, either for weighted or unweighted, in the literature that is available
now. We developed algorithms that work with weighted and unweighted
random graphs for this reason.

3.1 Algorithm for Shortest Path of a Weighted Random Graph

Here, we have provided the Algorithm for identifying the shortest path of a
weighted random graph.

Input: Create a set of all unvisited sets (Gr, v, d, l)
Output: Evaluate the shortest path of a random graph.
Step 1: Initialize the vertices (v0 − vn)
Step 2: Choose two random vertices vi and vj .
Step 3: Follow the following steps for (vn − 1) vertices
Initially dij = α[dij = distance between vi, vj ]
Now, finding the maximum probability distribution p to connect the link
between vi, vj
for i = 0 to i < ln

if (PN (dij) > ln) [ln = links between vi, vj ]
then connect link between the vertices vi, vj .

Create a random graph with at most (v ∗ (v − 1)/2) links.
Step 4: Now follow the following steps of the random Graph Gr = (v, e) for
(v − 1) vertices
Assign the initial vertices of the random Graph

dist[vs] = 0
and

dist[vn] = α [For all unvisited node v0, v1, . . . , vn].
Update all adjacent vertices
if d(u) + l(u, v) < d(u)
then d(v) = d(u) + l(u, v)

Step 5: Repeated the steps until all vertices are not updated ((|v|) − 1) (if
there are (|v|) vertices).
Step 6: Evaluate the shortest path of the random Graph.
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3.2 Pseudo Code for Evaluating the Shortest Path of a Weighted
Random Graph

Algorithm shortest path SR(Gr, v, d, l)
Initialize the vertices (v0 − vn)
Choose two random vertices vi and vj
Initially dij = α[dij = distance between vi, vj ]
for i = 0 to i < ln

if (PN (dij) > ln) [ln = links between vi, vj ]
then connect link between the vertices vi, vj

Print (“A random graph is generated”)
Gr = (v, e)

dist[vs] = 0
and

if d(u) + l(u, v) < d(u)
then d(v) = d(u) + l(u, v)
Return dist
Exit
The time complexity of the algorithm is O(E log V ).

3.3 Implementation of the Algorithm 7.3.2

The following steps are the implementation of our proposed algorithm for
finding the optimal path of the random graph (see Figure 5). For this purpose,
we have used Table 3 that provides details of probability distribution.
Step 1: Initialize the set of vertices {1, 2, 3, 4, 5}.

Table 3 Probability distribution table for connecting nodes

Random Set of Nodes Distances of Nodes Probability p = 1
5

for Connecting the Nodes

1− 2 20 km 0.2

1− 3 6 km 0.2

1− 5 7 km 0.2

1-4 3 km 0.2

3-2 9 km 0.2

4-2 4 km 0.2

5-2 8 km 0.2
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Step 2: Randomly choose two vertices are 1 − 2 (see Figure 3) and the
probability of distribution for connecting two vertices is p = 1

5 , because in
this network (see Figure 4) there are 5 nodes and there is a chance to connects
two nodes is 1 because two nodes always only one edge in between them.
And the dotted line shows the connection between the nodes and the solid
line shows the shortest path of the network.

Figure 3 Randomly chosen two vertices namely 1 and 2.

Step 3: Random Graph is created based on the proposed algorithm mentioned
in 3.1.

Figure 4 Random graph.

Step 4: Applying our proposed algorithm, we get the random Graph (see
Figure 4) and the shortest path using the proposed algorithm is (1− 4− 2).

3.4 Algorithm for Shortest Path of an Unweighted Random
Graph

Here, we have provided the Algorithm for identifying the shortest path of an
unweighted random graph.

Step 1: Initialize the vertices (v0 − vn).
Step 2: Choose two random vertices vi and vj .
Step 3: Follow the following steps (4-10) for (vn − 1) vertices
Step 4: Initialize dist [v] = {α}
Step 5: dist [s] = 0
Step 6: visited [v] = {f}
Step 7: create a queue q; q.push(s) and visited [s] = t

Step 8: q ̸= empty
Step 9: u = q.pop()
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Step 10: continue for (v − 1)
dist [v] = dist [u] + 1

visited [v] = t
q.push(v)

Step 11: Exit

3.5 Pseudo Code for Evaluating the Shortest Path of an
Unweighted Random Graph

Algorithm shortest path SR(Gr, v, d, l)
Initialize the vertices (v0 − vn).
Choose two random vertices vi and vj .
Initially dij = α[dij = distance between vi, vj ]
for i = 0 to i < ln

if (PN (dij) > ln) [ln = links between vi, vj ]
then connect link between the vertices vi, vj

Print (“A random graph is generated”)
dist[v] = {α}
dist [s] = 0
visited [v] = {f}
q.push(s) and visited [s] = t
(q ̸= empty)
{
u = q.pop()
or(every adjacent v of u)
{
f(v ̸= visited)
{
dist [v] = dist [u] + 1
q.push(v)
}
}
The time complexity of the proposed algorithm O(V + E).

3.6 Implementation of the Algorithm

Implementing the Algorithm 3.5 creates a random graph (see Figure 5). Here,
we randomly chosen a set of vertices {0, 1, 2, 3, 4, 5}. Using our suggested
algorithm, we have obtained the random graphs mentioned in Figures 5(a)
to 5(f). Figure 5(f) gives the shortest path of the random graph depicted in
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Figure 5. Here, we have represented the visited nodes and generated queue in
a tabular form in every step of the algorithm (See Tables 4 to 8)

Figure 5 Random graph for model.

The step wise implementation of our proposed algorithm for unweighted
random graphs is as follows:

Step 1: Initialize the set of vertices {0, 1, 2, 3, 4, 5}.

Figure 5(a) Unweighted random graph for model.

Step 2: In this step Table 4 is generated and the corresponding random graph
is Figure 5(b).

Table 4 Visited node(s) and generated queue in step 2
Visited node 0
Queue 0

Figure 5(b) Random Graph with source node 0.

Step 3: In this step Table 5 is generated and the corresponding random graph
is Figure 5(c).
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Table 5 Visited node(s) and generated queue in step 3
Visited node 0 1 2
Queue 1 2

Figure 5(c) Shortest path of the random Graph is 0-1-2.

Step 4: In this step Table 6 is generated and the corresponding random graph
is Figure 5(d).

Table 6 Visited node(s) and generated queue in step 4
Visited node 0 1 2 3
Queue 2 3

Figure 5(d) Shortest path of the random Graph is 0-1-2-3.

Step 5: In this step Table 7 is generated and the corresponding random graph
is Figure 5(e).

Table 7 Visited node(s) and generated queue in step 5
Visited node 0 1 2 4
Queue 3 4

Figure 5(e) The shortest path of the random Graph is 0-1-2-3-4.



66 L. Sahoo and R. Das

Step 6: In this step Table 8 is generated and the corresponding random graph
is Figure 5(f).

Table 8 Visited node(s) and generated queue in step 6
Visited node 0 1 2 {4,0,1,2,3} 5
Queue 3 4

Figure 5(f) The shortest path of the random Graph is 0-1-2-3-4-5.

4 A Real Case Study (Survey Results)

We have considered a real case study to illustrate our proposed algorithm.
Here, we have considered two districts namely Paschim Bardhaman and
Birbhum of West Bengal, India, to describe the proposed study. To illustrate
the study (mentioned in Section 3), we have connected two districts through a
road network (see Figure 6) and the nodes of the road network are considered
as places, and links between the nodes are considered as paths (P(i)) of two
places. The nodes’ descriptions are mentioned in Table 9 and the distance of
the nodes is mentioned in Table 10. Figures 6, 7 and 8 are Google maps
of different nodes of the real case study in different scenario. Here, we
have considered three scenarios viz. scenario-1, scenario-2 and scenario-3.
The execution of the programming code of the proposed algorithm is suc-
cessfully run in Python (version 3.6.15) editor. Hardware configurations of
the computing machine are mentioned in Table 9.

Table 9 Details hardware configurations of computing machine

Processor Intel(R) Core (TM) i3-7020U CPU @ 2.30GHz 2.30 GHz

Installed RAM 12.0 GB (10.4 GB usable)

System type 64-bit operating system, x64-based processor

Windows edition 10 Home Single Language

Version 21H2

Device’s name Asus Vivobook15 Intel Core i3 7th Gen
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Figure 6 Google map of different nodes (Scenario-1).

Figure 7 Google map of different nodes (Scenario-2).

The Figure 9 is the graph representation with the help of Tables 10 and 11
mentioned here. Choose random nodes from Table 9 and for connecting
the nodes we choose the probability p = 1

8 , because in our network there
are 8 nodes or places. Distance and probability distribution between Nodes
are mentioned in Table 12. And there is chance to connect to node is 1 or two
nodes are connected by only one link or edge.
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Figure 8 Google map of different nodes (Scenario-3).

Figure 9 Representation of a road network in terms of graph.

4.1 Execution of Algorithm on Real Case Study

In this section we have generated random graph (see Figure 9(a)) and we
have also generated graphs (see Figures 9(b) to 9(h)) in subsequent steps of
the algorithm. Here, it is to be mentioned that doted lines represent the path
which is optimal in a subsequent step of the proposed algorithm. Here, we
have Initialized the set of vertices as {A,B,C,D,E, F,G,H} and random
graphs are created using the probability distribution mentioned in Table 12.
Therefore, in this exaction process, we have considered probability value
of each node as p = 1/8 = 0.125 (as every node has equally likely
probable to connect the other nodes). Here, the input is the whole graph
depicted in Figure 9(a). Using our proposed algorithm, we have executed
the program in python language and we have obtained a series of outcomes
obviously random graphs which are displayed in Figures 9(b) to 9(h). Finally,
Figure 9(h) provides the shortest path. The path has been displayed using
doted lines.

The Shortest path of a random graph (see Figure 9) is Ps = P(7) = A-B-
D-C-E-F-G-H [where Ps = Shortest path].
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Table 10 Node description
Node Place Name
A Nababhat bus stand
B Panagarh bazar
C Shriniketan more
D Illam bazar
E Panrui bazar more
F Suri bus stand
G Dubrajpur Nh more
H Bakreswar

Figure 9(a) Random graph.

Table 11 Distance between nodes
Node Place Name Distance
A−B Nababhat Bus Stand – Panagarh Bazar 45 km
A− C Nababhat Bus Stand – Shriniketan More 52 km
B −D Panagarh Bazar – Illam Bazar 23 km
C −D Shriniketan More – Illam Bazar 14 km
C − E Shriniketan More – Panrui Bazar More 16 km
D − E Illam Bazar – Panrui Bazar More 23 km
E − F Panrui Bazar More – Suri Bus Stand 17 km
D − E Illam Bazar – Dubrajpur Nh More 26 km
F −G Suri Bus Stand – Dubrajpur Nh More 19 km
H −G Dubrajpur Nh More – Bakreswar 13 km
F −H Suri Bus Stand – Bakreswar 20 km

Table 12 Distance and probability distribution between nodes
Node Probability Distribution p = 1

8
Distance

A−B 0.125 45 km
A− C 0.125 52 km
B −D 0.125 23 km
C −D 0.125 14 km
C − E 0.125 16 km
D − E 0.125 23 km
E − F 0.125 17 km
D − E 0.125 26 km
F −G 0.125 19 km
H −G 0.125 13 km
F −H 0.125 20 km
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Figure 9(b) P(1) = A-B.

Figure 9(c) P(2) = A-B-D.

Figure 9(d) P(3) = A-B-D-C.

Figure 9(e) P(4) = A-B-D-C-E.

Figure 9(f) P(5) = A-B-D-C-E-F.

Figure 9(g) P(6) = A-B-D-C-E-F-G.
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Figure 9(h) P(7) = A-B-D-C-E-F-G.

5 Conclusion

The proposed study is help to evaluate the shortest path of weighted and
unweighted random Graphs both. To evaluate the proposed algorithm, we can
take the nodes randomly and then implanted a network according a predefine
probability distribution. This study is very beneficiary for the social media,
road transportation etc. to evaluate the shortest distances between the nodes.
In future application of this study is finding shortest path of social media
because previously it is impossible to calculate the shortest distance between
the nodes or group of nodes in social media but our proposed algorithm able
to evaluate the shortest distances between the nodes or of group of a social
media. Because this study able to evaluate the shortest path of an unweighted
graph. This study also has practical implementation for weighted graph.
It gives a big impact for road transportation network because some time it
is found that two nodes have no feasible connection but it has probability
to connect a link. So, this study helps to finding the shortest path when
this situation previously is not possible. In future we try to reduce the time
complexity of our propose algorithm.
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