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Abstract

In the present article, we investigate two different reliability structures, which
belong to the class of consecutive-type systems under redundancy policy.
The resulting structures consist of n independent components, but they also
dispose warm standby ones. The distribution of the number of working warm
components at the time of system’s failure is studied in some detail. Among
others, explicit expressions for determining the corresponding probability
mass function are established. A short discussion for future work is also
developed.

Keywords: 2-within-consecutive-k-out-of-n structures, (n, f, 2) systems,
warm standby redundancy, Samaniego’s signature.

1 Introduction

In the last four decades, the class of consecutive-type systems has been
enormously developed. The fundamental member of this family is the so-
called consecutive-k-out-of-n: F system (1 ≤ k ≤ n), which consists
of n components and fails if and only if at least k consecutive ones fail
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(see, e.g. [1–4]). It is evident that several extensions of the aforementioned
structure have been introduced and studied in the literature. For instance,
the r-within-consecutive-k-out-of-n system is a natural generalization of
the consecutive-k-out-of-n: F model and fails if and only if at least r out
of consecutive k components fail (1 ≤ r ≤ k). It is straightforward
that for r = k, the r-within-consecutive-k-out-of-n system reduces to a
consecutive-k-out-of-n system (see, e.g. [5, 6]).

In addition, several reliability structures having two common failure cri-
teria appear in the literature. Some of them include a consecutive-type failure
criterion. For example, one may consider the well-known (n, f, k) structure,
which consists of n components and fails if and only if at least f components
or consecutive k components fail (1 ≤ k < f). It goes without saying that if
f ≤ k, the (n, f, k) system coincides to the traditional f -out-of-n: F model
(see, e.g. [7–9]). Moreover, additional reliability systems with two (or more)
failure criteria can be found in [10], wherein the so-called ⟨n, f, k⟩ model is
introduced. The particular structure contains n components and fails if, and
only if, there exist at least f failed components and at least k consecutive
failed ones (see, also [11]). Among others, an alternative reliability model,
whom operation is related to two different conditions, has been established
in [12] and it combines a m-consecutive k-out-of-n: F and a consecutive
kc-out-of-n: F system.

Throughout the lines of the present work, we apply the well-known warm
standby redundancy to two specific members of the class of consecutive-
type systems. More precisely, we carry out a signature-based investigation for
the 2-within-consecutive-k-out-of-n and the (n, f, 2) system under the afore-
mentioned redundancy policy. In Section 2, we present the definitions of key
concepts that will be used later, the reliability models that will be explored,
while the necessary terminology is also provided. Section 3 displays the
main results of the paper, wherein closed formulae for the probability mass
function of the number of working warm components at the time of system’s
failure are proved. Finally, Section 5 highlights the contribution of the present
manuscript, while some thoughts for its extensions and/or generalizations are
also provided.

2 The General Framework and Some Basic Concepts

Let us consider a reliability structure consisting of n1 active components.
We next denote by T1, T2, . . . , Tn1 the lifetimes of these components, while
T corresponds to the system’s lifetime. If we assume that T1, T2, . . . , Tn1 are
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independent and identically distributed (i.i.d., hereafter), the signature of the
system is defined as the probability vector (s1(n), s2(n), . . . , sn1(n1)) with

si = P (T = Ti:n1), i = 1, 2, . . . , n1, (1)

where T1:n1 ≤ T2:n1 ≤ · · · ≤ Tn1:n1 denote the respective order statistics
of the random sample T1, T2, . . . , Tn1 (see, e.g. [13]). It is also known that
the reliability function of any coherent system consisting of i.i.d. components
can be determined by the aid of its signature as given below

P (T > t) =

n1∑
i=1

siP (Ti:n1 > t). (2)

Based on (2), one may readily conclude that the system’s reliability
function is a mixture of the reliability functions of the corresponding order
statistics, with the mixture coefficients being the coefficients in the signature
vector. In addition, it is quite interesting that this representation has been
extended to the case of coherent systems with possibly dependent component
lifetimes (see, e.g. [14]).

On the other hand, the enhancement of the performance of the underlying
reliability structures can be gained by applying a standby redundancy therein.
Among other types, we next consider the so-called warm standby redundancy
(see, e.g. [15]). That practically means that we assume that n2 inactive (warm)
components are available for the system, and they can be used whenever
it is needed. It is evident that reliability structures under warm redundancy
fit well to several real-life applications. For instance, one may consider the
so-called cloud computing, wherein load balancers are used to distribute
incoming traffic across multiple servers. A warm redundancy policy can be
applied to backup load balancers, where a secondary load balancer remains in
a standby mode. Another real-life example refers to air traffic control systems,
which should maintain high availability for flight safety. Warm redundancy
can be used for radar or communication systems where a backup system
stays partially active, constantly receiving updates from the active system. For
instance, an optimization approach for warm standby series-parallel systems
is provided by [16]. Moreover, the reliability of multi-state systems that
incorporate warm standby components is investigated by [17]. For a detailed
study on the warm redundancy policy, the interested reader is referred to [18].

Under such a scenario, the failure rate of the warm components is
assumed to be smaller than the corresponding rate of the active components
of the underlying structure. Therefore, some warm components are expected
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Figure 1 Failure scenarios for the 2-within-consecutive-3-out-of-6 system.

to have failed at the time of system’s failure. However, some of them are
supposed to work at the same time. If we denote by W1,W2, . . . ,Wn2 the
random lifetimes of the inactive warm components of the coherent system,
we expect that some of these random variables shall take on larger values with
larger probability than the corresponding lifetimes of the active components.

Throughout the lines of the present manuscript, we investigate two
different members of the class of consecutive-type systems under warm
redundancy policy. The first one is known as r-within-consecutive-k-out-of-
n systems and fails if and only if at least r out of consecutive k components
fail (1 ≤ r ≤ k). For instance, if we consider the special case n = 6, r = 2,
k = 3, the resulting structure of order 6 fails if and only if there exist at least 2
failed components among 3 consecutive ones. For the particular structure, all
failure scenarios having a total number of 3 failed components are presented
at Figure 1, where •(◦) corresponds to a failed (working) component.

Based on the first two scenarios appeared in Figure 1, we readily observe
that the underlying reliability structure fails if components lying at the first
three consecutive positions fail or the first two components and the forth
component stop their operation.

In the sequel, we shall also consider the so-called (n, f, k) structure,
which is a reliability model with two common failure criteria. More precisely,
the particular system consists of n components and fails if and only at least f
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Figure 2 Failure scenarios for the (6, 3, 2) system.

components or at least consecutive k components fail (1 ≤ k < f). Figure 2
illustrates all combinations of working and failed components, which lead to
the failure of a (6, 3, 2) system.

Based on the first two scenarios appeared in Figure 2, we readily observe
that the underlying reliability structure fails if components lying at the first
two consecutive positions fail or the second and the third component stop
their operation.

3 Main Results

In the present section, we establish the main results of the article referring to
structures under redundancy. We next consider a coherent system consisting
of n1 components and n2 warm (inactive) ones. Our target is to investigate the
number of warm components, which are still working at the time of system’s
breakdown.

Let us first denote by T1, T2, . . . , Tn1 the lifetimes of the active com-
ponents of the structure, while W1,W2, . . . ,Wn2 correspond to the random
lifetimes of the available warm (inactive) components. If T represents the
lifetime of the system, we next define the random variable W such as

W =

n2∑
i=1

I(Wi > T ), (3)

which corresponds to the number of surviving warm components at the time
point of system’s failure. Kindly note that the random variable I(Wi > T ),
which appears in (3), provides the information whether the i−th warm
component is still working (I(Wi > T ) = 1) or not (I(Wi > T ) = 0).
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The following proposition offers explicit expressions for determining the
probability mass function of the variable W defined earlier, within a 2-within-
consecutive-k-out-of-n1 system consisting of i.i.d. components.

Proposition 1. Let us consider a 2-within-consecutive-k-out-of-n1 system
under warm standby redundancy. If we denote by n2 the number of its warm
components and by W the number of surviving warm components at the time
point of system’s failure (W ≤ n2), then if the lifetimes of both active and
warm components are i.i.d. and exponentially distributed with parameters λ1

and λ2 respectively, the probability mass function of random variable W can
be determined as

P (W = w) =
(n2

w

) n1∑
i=1

λi
1

(
(n1 − i+ 1)

(
n1 − (k − 1)(i− 2)

i− 1

)

−i

(
n1 − (k − 1)(i− 1)

i

))
×
∫ ∞

0
e−(wλ2−λ1)tti(1− e−λ2t)n2−w(1− e−λ1t)

n1−i
dt.

(4)

Proof. The lifetimes T1, T2, . . . , Tn1 of the active components of the underly-
ing 2-within-consecutive-k-out-of-n1 system is assumed to follow Exponen-
tial distribution with parameter λ1. Therefore, we may express their common
survival function as

P (Ti > t) = F (t) = 1− F (t) = e−λ1t, t > 0, i = 1, 2, . . . , n1. (5)

In a similar manner, one may easily conclude that, since the warm com-
ponents are assumed to follow an Exponential distribution with parameter λ2,
their common survival function is determined as

P (Wi > t) = G(t) = 1−G(t) = e−λ2t, t > 0, i = 1, 2, . . . , n2. (6)

By definition, the variable W takes on value w, if exactly w warm
components out of the n2 available ones have survived till the overall failure
of the underlying structure (0 ≤ w ≤ n2). In simpler words, the event
{W = w} coincides to the event {exactly wWi’s are greater than T}. Since
the components are assumed to be independent and identically distributed,
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we readily observe that

P (W = w) =
(n2

w

)
P (W1 > T,W2 > T, . . . ,Ww > T,

Ww+1 ≤ T,Ww+2 ≤ T, . . . ,Wn2 ≤ T ), (7)

where (n2

w

)
=

n2

w!(n2 − w)!
(8)

corresponds to the number of ways to pick w objects out of n2 ones. We
next condition the above expression on T and by recalling the independence
between the warm components the following result is straightforward

P (W = w) =
(n2

w

)∫ ∞

0

w∏
i=1

P (Wi > t)

n2−w∏
i=1

P (Wi ≤ t)dP (T ≤ t). (9)

Substituting (6) in (9), we obtain that

P (W = w) =
(n2

w

)∫ ∞

0

w∏
i=1

e−λ2t
n2−w∏
i=1

(1− e−λ2t)dP (T ≤t)

or equivalently

P (W = w) =
(n2

w

)∫ ∞

0
e−wλ2t(1− e−λ2t)n2−wdP (T ≤ t). (10)

By the aid of (2), the latter expression takes on the following form

P (W = w) =
(n2

w

) n1∑
i=1

s2:ki

∫ ∞

0
e−wλ2t(1− e−λ2t)n2−wfi:n1(t)dt,

(11)

where s2:ki denotes the i − th coordinate of the signature vector of the
2-within-consecutive-k-out-of-n1 system, while fi:n1 corresponds to the
probability density function of the i − th order statistic Ti:n1 . Recalling the
well-known formula (see, e.g. [19])

fi:n1(t) =
n1!

(i− 1)!(n1 − i)!
λ1(λ1t)

i−1e−λ1t(1− e−λ1t)
n1−i

, (12)
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we may rewrite (11) as

P (W = w) =
(n2

w

) n1∑
i=1

s2:ki

(n1

i

)∫ ∞

0
e−(wλ2−λ1)tiλ1(λ1t)

i−1

× (1− e−λ2t)n2−w(1− e−λ1t)
n1−i

dt. (13)

However, the coordinates of the signature vector for a 2-within-
consecutive-k-out-of-n1 system can be determined by the aid of the following
expression (see, e.g. [5])

s2:ki =
(n1 − i+ 1)

(
n1−(k−1)(i−2)

i−1

)
− i
(
n1−(k−1)(i−1)

i

)
i
(
n1

i

) , i = 1, 2, . . . , n1

(14)

We next combine formulae (13) and (14) and the desired result is
straightforward. ■

Proposition 2 provides closed formulae for determining the probability
mass function of the variable W defined in (3), within a (n1, f, 2) system
consisting of i.i.d. components.

Proposition 2. Let us consider a (n1, f, 2) system under warm standby redun-
dancy. If we denote by n2 the number of its warm components and by W the
number of surviving warm components at the time point of system’s failure
(W ≤ n2), then if the lifetimes of both active and warm components are i.i.d.
and exponentially distributed with parameters λ1 and λ2 respectively, then
the probability mass function of random variable W can be determined as

P (W = w) =
(n2

w

)(f−1∑
i=1

λi
1

(
(n− i+ 1)

(
n− i+ 2

i− 1

)
− j

(
n− i+ 1

i

))

+i
(n1

i

)
λf
1

n∑
j=f

(n− j + 1)
(
n−j+2
j−1

)
− j
(
n−j+1

j

)
j
(
n
j

)


×
∫ ∞

0
e−(wλ2−λ1)tti(1− e−λ2t)n2−w(1− e−λ1t)

n1−i
dt.

(15)

Proof. The lifetimes T1, T2, . . . , Tn1 of the active components of the under-
lying (n1, f, 2) system is assumed to follow Exponential distribution with
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parameter λ1. Therefore, their common survival function can be determined
by the aid of (5). In addition, the warm components are assumed to follow
an Exponential distribution with parameter λ2. Therefore, their common
survival function can be expressed via (6).

As mentioned earlier, the variable W takes on value w, if exactly w
warm components out of the n2 available ones have survived till the overall
failure of the underlying structure (0 ≤ w ≤ n2). Based on the fact that
the components are assumed to be independent and identically distributed,
we once again conclude that P (W = w) for the (n1, f, 2) system can be
computed by the aid of (10).

We next combine (2) and (10) and the following holds true

P (W = w) =
(n2

w

) n1∑
i=1

sn,f,2i

∫ ∞

0
e−wλ2t(1− e−λ2t)n2−wfi:n1(t)dt,

(16)

where sn,f,2i denotes the i − th coordinate of the signature vector of the
(n1, f, 2) system, while the probability density function of the i − th order
statistic Ti:n1 , e.g. fi:n1 is given by (12). Substituting (12) in (16) we observe
that

P (W = w) =
(n2

w

) n1∑
i=1

sn,f,2i

(n1

i

)∫ ∞

0
e−(wλ2−λ1)tiλi

1t
i−1

× (1− e−λ2t)n2−w(1− e−λ1t)
n1−i

dt. (17)

However, the coordinates of the signature vector for a (n1, f, 2) system
can be determined by the aid of the following expression (see, e.g. [20])

sn,f,2i =



(n− i+ 1)
(
n−i+2
i−1

)
− j
(
n−i+1

i

)
i
(
n
i

) , i = 1, 2, . . . , f − 1

n∑
j=f

(n− j + 1)
(
n−j+2
j−1

)
− jn− j + 1j

j
(
n
j

) , i = f

0, i = f + 1,
f + 2, . . . , n

(18)

We next combine formulae (17) and (18) and the desired result is readily
derived. ■
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4 Discussion

In the present work, a signature-based analysis of coherent structures under
warm redundancy has been carried out. General speaking, warm redundancy
can be particularly useful in systems that require a balance between high
availability and cost-effectiveness. Among others, a key reason why warm
redundancy proves valuable is that warm redundancy ensures a backup
system which can quickly take over in case of a primary system failure,
minimizing service interruptions. The theoretical results have been produced
under independence. Explicit formulae for determining the probability mass
function of the number of alive warm components at the system’s failure
are delivered for specific consecutive-type structures. The main contribution
of the present work is the investigation of the particular consecutive-type
systems under redundancy and the establishment of closed expressions for
evaluating their performance. It could be interesting to investigate different
reliability structures under warm redundancy and/or having an alternative
type of redundancy policy.
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