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Abstract

A constrained shortest route problem in graph theory is about determination
of a shortest path between two given nodes of the network that also visits a
given set of specified nodes or a set of specified links before arriving to the
destination. These earlier approaches did not consider specified elements con-
taining both nodes and links of the given network. This paper finds a shortest
path joining the origin node to the destination node, which is constrained
to pass through a set of ‘K’ specified elements of the given network, where
K1 number of elements represent nodes, 0 < K1 < K, and K2 number of
elements represent links, where K1+K2 = K. Alternatively, if the specified
elements representing nodes are contained in the set Sn and the remaining
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elements representing links by the set Sl, and the set of specified elements
denoted by the set Se, then Se = {Sn ∪ Sl}. Such restricted path will also
have real-life applications. Depending upon the configuration of the specified
elements, these constrained paths may have loops. The approach discussed in
this paper is a heuristic approach, which finds the required constrained path
in a real time.

Keywords: Specified nodes, specified links, specified elements, conditional
spanning network, index restricted network.

1 Introduction

Shortest route problem is a classical routing problem which has attracted
lot of attention by the researchers, [1–12]. Kalaba [13] modified the shortest
route problem by adding a condition that the path joining the origin to the des-
tination must visit a set of specified nodes. Determination of a path through
the specified nodes was attempted by the dynamic programming approach by
Saksena, Kumar, Sinha and Bajaj [14–16]. The dynamic programming (DP)
approach has a disadvantage that its computational complexity increases with
an increase in the value of K, and therefore the DP approach had limited
success for solving these constrained problems. One more variation of the
constrained path problem was proposed and solved by Arora and Kumar, see
[17, 18]. The problem they considered was to find the minimum cost route
from the origin and the destination, which is constrained to pass through the
K specified links of the given network. They solved this problem by using the
ring sum linear algebra.

The minimum spanning tree of a given network is also a classical problem
in graph theory, which has also been attempted by many, for example, see
[9, 19]. The shortest spanning tree problem finds a tree of minimum length
of a given network. A variant of the shortest spanning tree was developed
by Munapo et al. [20], where the shortest spanning tree was constrained
to have restricted node index at node i. For example, if the node index
at node i denoted by ni, the restriction imposed on the index of the node
in [20] is that ni ≤ 2, ∀i. This was an interesting variation, which was
intended for solving the travelling salesman problem, which requires a min-
imum cost path that passes through all nodes and returns to the starting
node. The index restricted connected network approach was successfully
applied by Kumar et al. [21, 22] for solving the travelling salesman problem.
Furthermore, this index restricted variation of the minimum spanning tree



Path Through Specified Nodes and Links in a Network 265

was also applied by Kumar et al. [23] for solving the constrained path
problem posed by Kalaba [13] and observed that computational complexity
was no longer dependent on the value K representing the number of spec-
ified nodes. Specified node requirement was taken into the account by the
index of the node, i.e., ni ≥ 2 and a even number for all specified nodes.
Recently Kumar et al. [24] applied the index restricted minimum spanning
tree approach [20] to find the constraint path passing through a set of specified
links [24].

In this paper, we reconsider the constraint path problem passing through
a set of specified elements, where these elements in the set Se can be:

(i) Nodes only, i.e., Se = Sn when Sl = ∅ or
(ii) Links only, i.e., Se = Sl when Sn = ∅ or

(iii) Both, nodes and links, i.e. Se = {Sn ∪ Sl}, where Sl ̸= ∅, and Sn ̸= ∅.

The (i) above will develop a situation that was discussed by
Kumar et al. [23] and the (ii) above will take us to the situation that was
discussed by Kumar et al. [24]. In this paper, we discuss the case (iii), that
has not been attempted so far. It may be noted that earlier approaches i.e.,
dynamic programming and liner algebra will not be appropriate when the set
Se = Sn∪Sl, and both sets are not empty, i.e., two sets are such that Sn ̸= ∅,
and Sl ̸= ∅.

A few more relevant algorithms for the shortest route problems can be
seen in [25–30].

This paper has been organised in 6 sections. Justification for such a
restricted path is discussed in Section 2. Section 3 deals with characteristics of
such a path through the K specified elements. Steps of the proposed heuristic
for a path through the K specified elements have been discussed in Section 4.
A few numerical illustrations are given in Section 5 and concluding remarks
in Section 6.

2 Justification for a Path Through K Specified Nodes And
links

Distribution and logistics problems arise at every manufacturing site. For
a smooth running of the production plant, it is important to make sure
that raw materials are made available in time. Manufactured goods must
be removed from the production site to warehouses and later forwarded
to their destination, the consumer. Many of these distribution and logistics
problem are formulated as a network model and solved by using appropriate
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methodology. Conditions like visiting a set of specified nodes and links in a
network model is a natural consequence that may arise in situations, where a
scheduled vehicle engaged in doing some tasks is also directed to attend to
a specific work at some known places, which can be described by nodes and
links of that network.

For example, consider a farm, from where after harvesting, produced must
be transported to different warehouses with the intention of raising revenue,
retention of produce for personal use, and seeds for the next crop are just a few
possibilities. This distribution situations lead to various logistics problems,
which can be formulated in the form of a network model. For example,
warehouses positions may be represented by the nodes and some outlets on
the way from one node to another may be on the links joining those nodes.
Such a situation may require finding a path from the origin to the destination,
which is constrained to pass through specified elements, which are in the form
of nodes and links of the given network.

Another example of a path through nodes and links was recently devel-
oped by the strong wind experienced in the city of Melbourne, where lots
of trees due to strong winds came down in residential areas and on major
highways. These fallen trees got to be removed as a matter of urgency.
Councils responsible for these roads must clear the blocked roads as soon
as possible. This is a typical situation of looking for a path that must pass
through specified links and nodes as these heavy vehicles must enter the road
from the correct side to remove the fallen trees.

3 Physical Characteristics of the Constrained Path

Characteristics 3.1: Path May have Loops

We have noted earlier in [23, 24] that a constrained paths may have loops.
However, for completeness, let us reconsider a network G(N,L), where
nodes of the network are represented by the set N = {1, 2, . . . , n} and links
are represented by the set L = {(1, 2), . . . , (n − 1, n)}, and let cardinality
of these two sets be |N | = n, |L| = l. It means that the number of nodes
and links in the network G(N,L), is represented by n and l, respectively.
A connected tree of the n node network is comprised of (n − 1) number
of links, out of which r links have been specified. If the specified links are
free of a circuit among them, the additional number of links that will form
a connected tree will be (n − r − 1). Since specified links are given, they
may form any configuration, i.e., a tree, a disconnected graph, or a graph
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Figure 1 Specified nodes {j, k, and q} and specified links {(i, j), (k, p)}.

with loops. In addition to specified links, the path to be determined is also
required to pass through the specified nodes. Together they all form a part of
the path, therefore such a path containing the specified nodes and links may
have circuits among them. Since the specified nodes and links are given, they
can form any configuration and one such set of specified elements containing
nodes and links is shown in Figure 1. Specified elements are shown in blue
colour.

As an illustration, in Figure 1 we have two specified links (i, j) and (k, p),
and three specified nodes j, k, and q, which are displayed in the blue colour.
They all must form a part of the path from the origin node 1 to the destination
node n. This path will pass through the links (i, j) and (k, p), and the nodes
j, k, and q. In general, we may assume that the number of specified links be
denoted by r, where r is such that 0 < r < (n − 1) < l, and note that inn
Figure 1, the value of r is equal to 2 and the number of specified nodes is 3.

Since r specified links are given, we need at least (n− r − 1) additional
links to form a connected graph of the network G(N,L), when the specified
links did not form any loop, else more links will be required. These additional
(n − r − 1) or more links can be selected by following Kruskal [19] steps,
however, such a spanning tree will not be a minimum spanning tree; hence
we call it a ‘conditional minimum spanning tree/network’ in [24]. When
specified links form a circuit, the network we obtain will not be even a tree
and will require > (n − 1) links. Additional number of links also reflect the
number of circuits in the network. We will again point out this in Section 5.

Kruskal’s [19] spanning tree approach, can generate a connected graph as
explained in the Steps of the algorithm in section 4.
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Characteristics 3.2: Nature of the Mathematical model and
justification for a heuristic

A mathematical model for this shortest path through K specified nodes
and links can be developed but it will be unwieldy and complex for any
application, as was explained in [24]. Therefore, a heuristic is desirable for a
timely result, which can provide a good solution to the problem in real time.

Characteristics 3.3: Total index, index of specified nodes and
nodes associated with specified links.

The number of nodes associated with r specified links will be ≤ 2r and the
number of links in the conditional connected network will be ≥ (n − 1).
Therefore, the total index value of all selected and specified links can be
≥ 2(n− 1).

For specified nodes and nodes associated with the specified links, node
index will vary. It may be 2 or 4 for a specified node. For the origin and the
destination node, it will be 1, as the path will originate from the origin node
and will terminate at the destination node. For a node where a specified link
ends or starts, additional link will be required to leave that node or enter that
node. Therefore, index for such node will be >=2. The path joining the origin
to the destination, passing through all specified nodes and nodes associated
with the specified links, may require more links for maintaining continuity
of the path. This point will be clear in the numerical illustrations. The index
value 4 indicates formation of a cycle at that node.

Characteristics 3.4: The ‘Index Balancing theorem’.

The index balancing theorem from [20] states that, a constant when added to
all links emanating from the same node does not change the relative merit
of any link. However, it can develop an alternative. From the conditional
network obtained at Step 1, index values for each node are known, and we
also know the desired index values of each node, therefore, the high, and low
index nodes can be easily identified. This point is illustrated in the numerical
illustrations. Repeated application of the index balancing theorem brings
index to a balanced level. Although the index balancing theorem is used
to change the links but the specified links cannot be removed by the index
balancing theorem. The balancing theorem can be used to increase the index
of specified node or a node that belongs to a specified link to an even number.
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4 Algorithmic Steps for the Path Through the Specified
Nodes and Links

The steps of the algorithm to find the path through the specified nodes and
specified links will be as follows:

Step 1: Generate an initial connected network:

1.1 For the given network, select the specified r links to form the required
initial network. Arrange other (l − r) links in non-decreasing order of their
weight.

1.2. Select the minimum weight link from these (l−r) links from the step 1.1
and if it forms a cycle with the existing links, reject it. If it does not form a
cycle, select it and move to the next minimum weight link. Since the specified
links are given, they all are included, even if they may have a cycle among
them. However, the subsequent selections should not form a new cycle.

1.3: Repeat Step 1.2, until total number of selected links become (n− r− 1).
If the specified links form a cycle, for each cycle, additional link will be
required to form a conditional connected graph of all n nodes.

Step 2: For the conditional connected network obtained from step 1, develop
a table of node index they have, and required for each node. Minimum
required index values are estimated by the nature of the node classification.
For example, the index value will be at least 2 for a specified node.

Step 3: By the application of the index balancing theorem, bring a balance
among the imbalance nodes. When all nodes have attained an index balance,
go to Step 4.

Step 4: Find the required path from the origin to the destination, which is
passing through the specified nodes and specified links. If path is lacking
continuity, go to Step 5.

Step 5: Extra links may be required for developing a path, and they may form
a loop. It is illustrated in the numerical illustrations.

5 Illustrative Examples

Two illustrations have been discussed for different configurations of the
specified elements.
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5.1 Example 1

Consider the network N (10, 21) in Figure 2. Node 1 represents the origin
node and destination node is represented by the node 10. The link weights
associated with the 21 links are indicated on various links.

The set of specified elements is comprised of nodes and links, where the
link set Sl = {(2, 3), (4, 5), (6, 7)} and the node set Sn = {8, 9}. This means
the set Se = {{(2, 3), (4, 5), (6, 7)}, {8, 9}}. Since, both Sl and Se are
not null sets, they form the case (iii) discussed in Section 1, the introduction.
Previous approaches dealing with set of specified nodes [23] or the set of
specified links [24] will not be applicable to identify the required path. These
specified elements are shown in Figure 3. Once again, specified elements are
shown in the blue colour.

The minimum node index required by various nods is given in Table 1.
Justification for these indices is explained below by an * mark.

Figure 2 Given network.
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Figure 3 Specified nodes and links of the given network.

Table 1 Node index required
Node index 1* 2** 3** 4** 5** 6** 7** 8*** 9*** 10*
Required 1 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 1

Explanations notes for entries in Table 1:

• *Note that 1 and 10 denote origin and terminal nodes, hence minimum
index required is 1 to leave the origin node 1 and to reach the destination
node 10.

• ** Nodes 2, 3, 4, 5, 6, 7 from where either a specified link will start or
end, which for inclusion in the required path must have one more link to
enter or leave that node, hence requirement for the node index will be at
least 2 as shown in Table 1.

• *** Since nodes 8 and 9 are specified nodes, index requirement will be
at least 2. The total index will be an even number, as when we enter that
node, we must leave it also and if we must re-enter it again for some
reason, we must leave it again. Total index at such nodes will be an even
number and not an odd number.
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Figure 4 Conditional minimum connected network.

For the above 10 node networks; the connected network will have 9 links.
After selecting the 3 given specified links, we need at least 6 more links
to make a conditional connected graph. Since the given specified links are
forming a disconnected network; for this configuration, we need to select 6
more links to make a conditional shortest connected network (CSCN). After
selecting the 3 specified links, the remaining 18 links are arranged in non-
decreasing. Equal weights links are arranged in the order of the first node of
that link.

They are given by: {1(1,2)1 ,1(3,4)2, 1(4,7)3, 2(3,5)4, 2(5,10)5, 2(6,8)6,
3(1,8)7, 3(7,9)8, 4(4,6)9, 5(3,10)10, 5(5,7)11, 5(9,10)12, 6(1,6)13, 6(7,8)14,
8(7,10)15, 8(8,9)16, 10(1,4)17, 10(2,4)18}. The specified elements in the form
of links are: {10 (2,3), 4(4,5), 3(6,7)}.

Note that the first three links {(1,2), (3,4), (4,7)} are selected for inclusion
in the CSCN but the next link (3,5) forms a loop, hence is rejected. Next two
links (5,10) and (6,8) are selected for inclusion in the CSCN. Finally, the link
(7,9) is selected in the CSCN. This CSCN is shown in Figure 4.

Now we have obtained the CSCN of the given network where all specified
elements have been included. Now we plan to compare the node index we
have from Figure 4 with the required node index as shown in Table 1. This is
shown in Table 2.
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Table 2 Node index from Figure 4 is compared with what was required
Index/ node 1* 2** 3** 4** 5** 6** 7** 8 9 10*
Required 1 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 1
Index we have Fig 4 1 2 2 3 2 2 3 1 1 1
Imbalance 0 0 0 + 1 0 0 +1 +1 +1 0

Figure 5 Network after balancing the index of nodes 8 and 9.

From Table 2, we note that an imbalance among node index is at node 4,
7, 8, and 9. The imbalance at nodes 8 and 9 can be easily balanced by adding
the link (9,8), however, it will give rise to a loop as both nodes are short of
one index. This is shown in Figure 5.

The path will be:
1 -> 2 -> 3 -> 4 -> 7 -> 9 -> 8 -> 6 -> 7 -> 4 -> 5 -> 10.
The above path has 11 links. Since, the connected graph of 10 nodes is

expected to have 9 links, if a path pass through all nodes, therefore, the above
path will have two circuits, which are:

Circuit 1. 7 -> 9 -> 8->6 ->7,
Circuit 2. 4 ->7 -> 9 ->8 - >6 -> 7 -> 4,
and note that index at nodes 4 and 7 is not 3 but 4. This is reflected in

Figure 6.
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Figure 6 Note the link between the nodes 4 and 7 is acting in both directions like two
directed links.

Table 3 Node index values from Figure 4 is compared with what was required
Index/ node 1 2 3 4 5 6 7 8 9 10
Required 1 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 1
Index we have 1 2 2 4 2 2 4 2 2 1
Imbalance 0 0 0 0 0 0 0 0 0 0

Note from Figure 6, we are having a path from nodes 1 to 10 passing
through the specified links {(2,3), (4,5) and (6,7)} and nodes {8, 9}. These
new index values are shown in Table 3.

The path through the specified links and specified nodes is comprised of
two loops, which is typical in a constrained path through specified nodes and
links. Once again, note that all node index at the specified nodes and nodes
associated with the specified links is effectively an even number as shown in
Table 3.

5.2 Example 2

We reconsider the network N(10, 21) in Figure 2 with a slightly different
configuration of the specified elements made by links and nodes in Figure 7.

Note that 6 specified links are: {(2,3), (3,5), (4,5), (6,7), (6,8), (7,8)}
and one specified node {9}. To form a CSCN, we need to select at least
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Figure 7 Network with specified elements made of nodes and links.

Table 4 Index table for the network in Figure 8
Index/ node 1 2 3 4 5 6 7 8 9 10
Required 1 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 ≥2 1
Index we have 1 2 2 2 4 2 5 2 1 1
Imbalance 0 0 0 0 0 0 +1 0 +1 0

(9− 6) = 3 more links. The remaining non-specified links are 15, which are
arranged in non-decreasing order as shown below:

{1(1, 2)1, 1(3, 4)2, 1(4, 7)3, 2(5, 10)4, 3(1, 8)5, 3(7, 9)6, 4(4, 6)7, 5(3, 10)8,
5(5, 7)9, 5(9, 10)10, 6(1, 6)11, 8(7, 10)12, 8(8, 9)13, 10(1, 4)14,

10(2, 4)15}

Since the specified links were 6, we need at least 3 more links to form a
conditional shortest connected network. These three links are: {(1,2), (4,7),
(5,10)}. Note the 3 specified links {(6,7), (6,8) and (7,8)} are forming a loop,
and therefore the 9 links will not be able to develop a connected graph. The
next link selected is (7,9) forming CSCN with a loop. It is shown in Figure 8,
and index is given in Table 4.

Here again the link (7,9) is a two-way link and balance is achieved.
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Figure 8 Path through specified nodes and links.

Once all index order is balanced, except the node 9 and node 7, with index
value 1 and 5. Since node 9 is a specified node, it can be visited from the link
(7,9) and return to node 7. The path is as follows:

1 → 2 → 3 → 5 → 4 → 7 → 8 → 6 → 7 → 9 → 7 → 5 →
10, with loops 7 → 8 → 6 → 7, 7 → 9 → 7 and 5 → 4 → 7 → 8 →
6 → 7 → 9 → 7 → 5. Total cost will be =1+10+2+4+1+6+2+3+3+3+5+2
=42 units.

6 Concluding Remarks

6.1 In this paper, we have developed an algorithm to find a route through
k specified elements, which can be node and links. Earlier approaches
considered specified elements comprised of either node or links but not both.

6.2 Earlier approaches were based on dynamic programming or linear alge-
bra. In dynamic programming, computational complexity was dependent
on the value of K and that approach was unable to handle specified links.
Similarly, the approach based on linear algebra was able to deal with the
specified links only but was unable to deal with the specified nodes. The
conditional minimum spanning tree approach used in this paper, can manage
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K specified elements, where some of these specified elements are nodes and
the remaining links.

6.3 Computational complexity does not increase with increase in the number
of specified elements which can be in any combination of nodes and links.

6.4 These constrained paths have real-life applications
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