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Abstract

The present study presents the numerical simulations for a shocked-heavy
fluid layer with a stratified N2/SF6/N2 configuration. Simulations were con-
ducted using a third-order modal discontinuous Galerkin method to solve
the compressible two-component Euler equations. The results were validated
against experimental data, confirming the accuracy of the computational
approach. Dynamics of the heavy fluid layer were found to be strongly
influenced by the shock Mach numbers Ms = 1.15, 1.25, 1.5. At a lower
Mach number Ms = 1.15, the interface deformations remained smooth and
relatively symmetric, with limited vorticity generation and weak pertur-
bations. Baroclinic effects at this stage were minimal, and the instability
growth remained linear. As the Mach number increased to Ms = 1.25, the
interaction became nonlinear, leading to the formation of small-scaled vortex
structures driven by moderate baroclinic effects. Interface mixing intensified
as rotational motion increased. At the highest Mach number Ms = 1.5, the
interface rapidly evolved into chaotic structures, characterized by signifi-
cant vorticity amplification, vortex roll-up, and the onset of turbulence. The
baroclinic vorticity, resulting from the misalignment of pressure and den-
sity gradients, dominated the vorticity production mechanism, particularly

Journal of Graphic Era University, Vol. 13_1, 75–90.
doi: 10.13052/jgeu0975-1416.1314
© 2025 River Publishers



76 Satyvir Singh

at higher Mach numbers. Quantitative analysis demonstrated that average
vorticity, baroclinic vorticity, and enstrophy grew rapidly with increasing
Mach numbers. Enstrophy, which quantifies turbulence intensity, exhibited
pronounced growth at Ms = 1.5, marking the transition to turbulent mixing.
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1 Introduction

The Richtmyer-Meshkov (RM) instability occurs when a shock wave or an
impulsive acceleration disturbs the interface separating two fluids [1, 2].
This instability is triggered by the generation of baroclinic vorticity, which
arises when the pressure gradient from the shock wave is misaligned with
the density gradient at the interface. In its early stages, the perturbation
amplitude grows linearly, but it eventually transitions into a nonlinear regime,
forming prominent structures like spikes and bubbles [3]. Over time, this
process may evolve further, leading to turbulent mixing. The RM insta-
bility plays a vital role in various engineering and scientific contexts. For
instance, in inertial confinement fusion (ICF), the RM instability proves
detrimental as it contaminates the fusion fuel within the capsule, reducing
the thermonuclear yield [3]. Beyond engineering, the RM instability provides
insights into phenomena related to supernovae and stellar evolution [4].
Both ICF capsules and supernova consist of multiple material layers with
distinct initial perturbations at their interfaces. Essentially, the RM instability
occurs at fluid layers with finite thickness and discrete boundaries, where
the instability growth at one interface influences that of adjacent ones. This
complex interaction, termed interface coupling, arises due to varying initial
conditions at each interface [5, 6]. Additionally, the instability growth rates
at the interfaces often differ, resulting in intricate mixing across the fluid
layer. Therefore, understanding the instability behavior in fluid layers with
finite thickness and two distinct interfaces is crucial for unravelling such
phenomena.

Numerous studies have been conducted on the simplified fluid-layer
scenario, in which the single-mode perturbations at both interfaces are iden-
tical [7]. Taylor initially examined this scenario theoretically in the context
of Rayleigh-Taylor (RT) instability [8, 9]. After then, Mikaelian extended
the investigation to fluid layers in RM instability and created an analytical
model to account for the two interfaces’ linear amplitude rise [10, 11]. To
shed light on the physics of RM instability mixing, Balakumar et al. [12]
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experimentally examined the characteristics of turbulent mixing in an RM
instability caused by a fluid layer under the influence of a single shock and
a reshock wave. Jacobs et al. [13] developed an alternative linear model by
solving velocity potential functions. While the formulation differs from the
approach of Mikaelian [11], it yields predictions that are nearly identical
to his approach. Liang and Luo [14] expanded the model introduced by
Jacobs et al. [13] to include a layer that divides three fluids with vary-
ing densities. Later, Liang et al. [15] investigated the impact of interface
coupling and reverberating waves on perturbation growth by constructing
several fluid layers with different gas mixtures and thicknesses using the
soap-film approach. The fundamental mechanism of the RM instability under
the influence of a reshock wave was recently revealed by Li et al. [16], which
numerically examined the evolution of a shock-induced fluid layer. Recently,
Guo et al. [17] studied the RM instability finger collisions in light fluid layers
under reshock conditions through shock-tube experiments.

In this work, we present the numerical simulations for a shock-driven
heavy fluid layer with two different interfaces. A fluid layer with composed
stratified N2/SF6/N2 configuration is considered as a heavy fluid layer, which
involves two different kinds of interfaces, such as V-shaped (I1) and fixed
(I2). For numerical simulations, we apply a high-order modal discontinuous
Galerkin solver to investigate the RM instability at the heavy fluid layer.
The goal is to analyse the effect of shock Mach number on the evolution
of flow structures, vorticity generation, and mixing dynamics as the shock
interacts with this fluid layer. By leveraging a high-order DG scheme, the
present study captures the detailed wave interactions, vortex dynamics, and
instability growth that characterize the RM instability. The remainder of this
investigation is organized as follows: Section 2 presents the initial setup and
the governing equations used to simulate the RM instability. Section 3 details
the numerical solver employed and the validation process. Section 4 discusses
the numerical results and provides an in-depth analysis of the shocked heavy
fluid layer. Finally, conclusions are drawn in Section 5.

2 Problem Setup and Governing Equations

2.1 Problem Setup

Figure 1 shows the initial configurations of the shock wave interaction with
the N2/SF6/N2 fluid layer used in this study. The numerical simulations are
conducted within a rectangular domain measuring [0, 100] × [0, 250] mm2.
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Figure 1 Schematic description of the initial configurations for a shocked heavy fluid layer.
Here d denotes the fluid-layer thickness, I1 denotes the initial first interface, I2 denotes the
initial second interface. θ, λ, and a0 are the vortex angle, wavelength, amplitude of the I1
interface, respectively. The solid arrow illustrates the direction of shock wave propagation.

I1 is the first V-shaped interface in this fluid layer, and I2 is the second
fixed interface. While, d = 10 mm denotes the fluid-layer thickness. The I1
interface is located downstream of the shock, with the left end positioned 5
mm away from the incident shock (IS) wave moving from left to right along
the x-direction, and situated in N2 gas. Moreover, 35 mm is the IS wave’s
beginning distance from the domain’s left boundary. The Mach number Ms

characterizes the IS wave. In the present setup, the total length of the I1
interface, which is twice the standard amplitude of a single-mode interface,
is referred to as the initial amplitude (a0). The wavelength of the I1 interface
is determined by taking λ = L = 100 mm. The vertex angle of the
I1 interface is θ. The relationship between a0, λ, and θ for this V-shaped
geometry is a0/λ = 1

4tan(θ/2). The z = L
2 + L

8 tan(θ/2) gives the location
of the I1 interface. We take into account a vertex angle of θ = 60◦ for
numerical simulations. For the shock wave strengths, three Mach numbers,
Ms = 1.15, 1.25, and 1.5, are taken into consideration. In this computational
domain, the top, bottom, and right boundaries function as outlets, while the
left boundary acts as the inflow boundary. Around the fluid layer, the initial
pressure and temperature are specified as P0 = 101, 325 Pa and T0 = 273 K,
respectively.

2.2 Governing Equations

The compressible two-component Euler equations are numerically solved in
the current Work. These equations can be re-written in using the conservative
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form as
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where ρ is the density; u and v are the velocity components in the x− and y−
directions, respectively; E is the energy, ϕ is the mass fraction; and p is the
pressure which is evaluated from the mathematical expression as follows:

p = γmax

(
ρE − 1

2
(u2 + v2)

)
. (2)

In this context, γmax represents the mixture’s specific heat ratio. The
equation that describes the relationship between pressure (p), density (ρ),
temperature (T ), and the mixture-specific gas constant (R) is given is p =
ρRT . The assumption is made that both gas components are in thermal
equilibrium and behave as calorically perfect gases. These gases are charac-
terized by their specific heats at constant pressure (Cp1, Cp2), specific heats
at constant volume (Cv1, Cv2), and specific heat ratios (γ1, γ2). The specific
heat ratio of a mixture can be evaluated by

γmax =
Cp1ϕ+ Cp2(1− ϕ)

Cv1ϕ+ Cv2(1− ϕ)
, (3)

where subscripts 1 and 2 denotes for bubble and ambient gas, respectively.
Remarkably, in numerical experiments, spurious oscillations can be caused
by the jump in the specific heat ratio across an interface, especially in
issues involving compressible flow. Adaptive strategies, artificial viscosity,
boundary conditions, and careful numerical method selection are frequently
needed to address this problem and reduce or eliminate oscillations while
preserving simulation accuracy.
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3 Numerical Method and Validation

3.1 Numerical Method

In this study, the two-dimensional system of a two-component compressible
Euler equations is solved using in-house developed explicit modal discon-
tinuous Galerkin solver [18]. Scaled Legendre polynomial functions that are
divided into non-overlapping rectangular components are used in the compu-
tational domain. Using the Gauss–Legendre quadrature rule, volume and flux
are both integrated [18]. Numerical fluxes at the elemental interfaces for two-
component flows are calculated using the HLLC scheme. An accurate scaled
Legendre polynomial expansion of third order is used to approximate the
solutions in the finite element space. An explicit third-order accurate strong
stability-preserving (SSP) Runge–Kutta approach is used to integrate time.
Furthermore, the computational solutions reduce non-physical oscillations by
using a high-order moment limiter [19].

3.2 Validation Study

To validate the current numerical solver, the numerical results are compared
with those obtained from experiments [20]. In this validation, a V-shaped
air/SF6 interface was taken into consideration. During the experimental
examination, a shock Mach number of Ms = 1.2 was utilized, and a vertex
angle of θ = 60◦ occurred. As shown in Figure 2(a), Schlieren image
comparison between our current findings and the experimental results is
presented. As the shock wave advances, our observations show that the V-
shaped contact becomes increasingly distorted. This interface distortion is
consistent with findings from a related experiment, as are the ensuing intricate
wave patterns. Furthermore, Figure 2(b) shows the time evolution of the
upstream interface displacement, represented by the symbol Ds. It can be
seen that the numerical simulation precisely reproduces the positions of Ds
and closely aligns with the experimental data.

4 Results and Discussion

In this section, we present the numerical results for the shock-driven
N2/SF6/N2 layer Emphasis is placed on the evolution of flow morphology,
wave patterns, vorticity generation, and enstrophy. In the following numer-
ical simulations, we use the normalized time to display flow morphology
snapshots. The characteristic time t0 = λ/Wi is used to standardize the
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Figure 2 Comparison of experiments [20] and numerical results for a shock wave interac-
tion with V-shaped air/SF6 interface: (a) numerical Schlieren, (b) variation in the upstream
interface displacement.

actual computational time, where λ is the initial wavelength of the V-shaped
interface and Wi is the IS wave speed. Thus we obtain dimensionless time
scale as τ = t/t0. We employ 1200 × 600 grid points for the numerical
simulations in order to accurately represent the intricate flow field structure
of the RM instability at heavy fluid layer.

Figure 3 illustrates the flow field evolution of the N2/SF6/N2 layer at
three different shock Mach numbers (Ms = 1.115, 1.25, 1.5) through density
contour plots at varying times (τ = 10, 20, 30, 50, 80). This figure effec-
tively demonstrates the influence of shock strength on the RMI showing the
progression from smooth interface deformation to turbulent mixing as Mach
number increases. At the initial shock Interaction (τ = 10), the shock wave
interacts with the interface of the heavier SF6 gas layer (initially stratified
between N2 layers). A sharp interface deformation occurs, with a slight tilt
toward the shock propagation direction. The interface shows a primary shock
compression effect, visible as a small wedge-like deformation. As time goes
(τ = 20 − 30), the fluid layer deformation remains smooth and relatively
symmetric at Ms = 1.15. The amplitude of the disturbance increases, but
the flow is less chaotic. More significant deformation occurs due to stronger
compressibility effects. At Ms = 1.25, vortex structure starts to emerge,
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Figure 3 Flow field evolution in the shock-driven N2/SF6/N2 layer: density contours with
three different shock Mach numbers (Ms = 1.15, 1.25, 1.5).

especially at the corners of the interface. While, at high Mach number i.e.
Ms = 1.5, The fluid layer shows strong instability and vortex formation.
The deformation is much larger, and small-scale structures (vorticity) appear
around the interface. During intermediate development (τ = 50), the fluid
layer becomes more nonlinear, with pronounced finger-like protrusions. At
high Mach number (Ms = 1.5), the development of instabilities is much
faster. The interface breaks down into fine turbulent structures. The flow
structures at Ms = 1.25 and Ms = 1.5 show clear vortex roll-ups, indicating
stronger growth of the RMI. Subsequently, later time evolution (τ = 80),
the fluid layer at Ms = 1.15 remains less turbulent, with elongated smooth
structures. Interestingly, the fluid layer at Ms = 1.25 breaks into multiple
vortices, and mixing intensifies. Turbulent structures are visible but less
chaotic compared to Ms = 1.5. The fluid layer at Ms = 1.5 becomes fully
turbulent with significant mixing and small-scale structures dominating the
flow.



Numerical Simulations of Shock-driven Heavy Fluid Layer 83

 
Figure 4 Vorticity generation in the shock-driven N2/SF6/N2 layer: vorticity contours with
three different shock Mach numbers (Ms = 1.15, 1.25, 1.5).

Figure 4 illustrates the vorticity generation process in the shocked
N2/SF6/N2 gas layer for three different shock Mach numbers (Ms = 1.15,
1.25, 1.5) over time. Vorticity fields are visualized at different dimensionless
times (τ = 10, 20, 30, 50, 80). At all Mach numbers, the interface begins to
distort due to the shock wave interacting with the density gradient (τ = 10).
Vorticity appears as thin red (positive) and blue (negative) bands, representing
shear layers. It is found that the vorticity is weak and localized along the
interface at Ms = 1.15. While, the vorticity is stronger, with more prominent
positive and negative regions forming at Ms = 1.5. During the intermediate
stages (τ = 20 − 30), vorticity remains weak and the shear layers are stable
with minimal deformation at Ms = 1.15. The interface is stretched but not
significantly perturbed. As Mach number increases, vorticity strengthens and
small-scale structures begin to appear Ms = 1.25. The interface shows slight
perturbations, indicating the early stages of instability. At high Mach number
i.e. Ms = 1.5, vorticity generation becomes highly nonlinear. Small vortices
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start forming due to strong Baroclinic effects, and the interface is highly
distorted. At later times i.e. τ = 50−80, the interface remains mostly smooth,
with vorticity confined to the shear layers for Ms = 1.15. No significant
secondary structures are observed. For Ms = 1.25, vorticity intensifies, and
small vortices appear along the interface. The interface shows noticeable
deformation and mixing. Interestingly, the vorticity field becomes highly
turbulent, with multiple vortices rolling up and interacting at Ms = 1.5.
The interface is completely distorted, showing significant mixing regions and
complex vortex interactions.

Now, we investigate the vorticity generation in the shocked heavy fluid
layer by analysing two spatially integrated fields: average and baroclinic
vorticities. The spatially integrated field of average vorticity is defined as

Average vorticity =

∫
|ω|dxdy∫
dxdy

, (4)

where ω denotes the vorticity. The spatial integrated field of baroclinic
vorticity production is given by

Baroclinic vorticity =

∫ ∣∣∣ 1
ρ2
∇ρ×∇p

∣∣∣ dxdy∫
dxdy

. (5)

Figure 5 presents spatially integrated fields of average vorticity and
baroclinic in the shocked N2/SF6/N2 layer for different shock Mach numbers
(Ms = 1.15, 1.25, 1.5). It can be seen from Figure 5(a) that higher Mach
numbers (Ms = 1.5) produce significantly higher average vorticity over time
compared to lower Mach numbers (Ms = 1.15) and (Ms = 1.25). For
Ms = 1.5, the average vorticity grows rapidly and shows a nearly linear
increase at later times, indicating sustained rotational motion. At Ms = 1.25,
the average vorticity increases more gradually. While, for Ms = 1.15, the
growth remains small, reflecting weaker shock-induced rotational motion.
On other hand, baroclinic vorticity arises from the Baroclinic effect, which
occurs when pressure and density gradients are misaligned. This effect is
the primary source of vorticity generation during shock interaction with an
interface, as illustrated in Figure 5(b). Similar to average vorticity, baroclinic
vorticity grows much faster for higher Mach numbers (Ms = 1.5) compared
to lower Mach numbers. For Ms = 1.5, baroclinic vorticity increases steadily
and significantly over time, reaching the highest values. While, for Ms =
1.25, the growth rate is slower but still notable, while for Ms = 1.15, it
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(a) (b)

Figure 5 Spatially integrated fields of (a) average vorticity, and (b) baroclinic vorticity in
the shocked N2/SF6/N2 layer with different shock Mach numbers (Ms = 1.15, 1.25, 1.5).

remains quite small. It can be found that increasing the Mach number inten-
sifies both average and baroclinic vorticity. This happens because stronger
shocks generate larger pressure gradients, enhancing the baroclinic effect and
consequently the vorticity. Both quantities show an initial rise immediately
after shock interaction, followed by sustained growth, especially at higher
Mach numbers (Ms = 1.5). The growth rate is higher for baroclinic vorticity
compared to average vorticity, highlighting the dominance of the baroclinic
mechanism in driving vorticity production.

Lastly, we examine the spatially integrated field of enstrophy, which
aids in comprehending the physical mechanisms underlying the interaction’s
vorticity creation or attenuation. It is characterized by

Ω(τ) =
1

2

∫∫
ω2dxdy. (6)

Figure 6 illustrates the spatially integrated of enstrophy for the shock-
driven N2/SF6/N2 layer with different shock Mach numbers (Ms = 1.15,
1.25, 1.5). When a shock wave interacts with a heterogeneous fluid layer,
it causes baroclinic vorticity generation due to the misalignment between
pressure and density gradients. This vorticity evolves into turbulent mix-
ing regions, increasing the enstrophy of the system. Higher shock Mach
numbers produce stronger shocks, leading to larger pressure gradients and
greater vorticity generation. Enstrophy increases rapidly at the start due to
the immediate shock impact on the interface, generating vorticity. It can be
seen that for Ms = 1.5, the enstrophy grows significantly faster and reaches
much higher values compared to lower Mach numbers. Also, the enstrophy
shows oscillations and a significant long-term rise, likely due to secondary
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Figure 6 Spatially integrated fields of enstrophy in the shocked N2/SF6/N2 layer with
different shock Mach numbers (Ms = 1.15, 1.25, 1.5).

instabilities and turbulence. For lower Mach numbers (Ms = 1.15), enstrophy
saturates at a relatively low value because the shock strength is insufficient to
trigger significant turbulence.

5 Conclusion

In this study, the evolution of the RM instability in a heavy fluid layer
has been thoroughly examined by analysing the interaction of a shock
wave with a stratified N2/SF6/N2 configuration. Key observations reveal
that the instability dynamics are significantly influenced by the strength of
the shock wave, characterized by different Mach numbers (Ms = 1.15,
1.25, 1.5). A third-order modal discontinuous Galerkin approach was used
to simulate unstable compressible two-component Euler equations, which
produced high-resolution numerical simulations. The computational model
was validated with existing experimental results. The numerical results show
that interface deformations remain smooth and relatively symmetric at lower
Mach numbers (Ms = 1.5), with limited vorticity generation and weak per-
turbations. However, as the Mach number increases, the interaction becomes
progressively nonlinear, leading to vortex roll-up and the onset of turbulence.
At Ms = 1.25, moderate baroclinic effects drive the formation of vortical
structures and enhance interface mixing. For high Mach numbers (Ms =
1.5), the interface evolves rapidly into highly chaotic structures, exhibiting
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significant vorticity amplification, turbulent mixing, and enstrophy growth.
Quantitative analysis of average vorticity, baroclinic vorticity, and enstrophy
confirms that stronger shocks intensify rotational motion and accelerate the
instability growth. The baroclinic vorticity, arising from the misalignment
of pressure and density gradients, dominates the vorticity production mech-
anism, especially at Ms = 1.5. The enstrophy, which quantifies turbulence
intensity, demonstrates rapid growth for higher Mach numbers, reflecting the
transition to turbulent mixing.
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