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Abstract 

In the present paper we briefly discuss the universal (theoretical) and experimental methods of estimation of 

uncertainty of measurement.  As an application we have taken the case of manual 3D co-ordinate measuring 

machine of with 1 m least count and this machine has been calibrated with the help of a Step Gauge. The study 

concludes that both universal and experimental methods give fairly identical results and hence universal method 

can be used easily for the uncertainty calculation of such machines. This is first of its kind of work where 

theoretically estimated uncertainty value has been compared w.r.t. the practically observed value. 
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1. Introduction 

To establish the suitability of a 3D Co-ordinate Measuring Machine (CMM) for length 

measurement it is necessary to estimate and specify the length measurement uncertainty of 

the machine. Uncertainty estimation is an essential part of CMM calibration.  Measured value 

may be slightly less or more than the true value of the physical quantity and the range in 

which the true value of measurand is estimated to lie is called the uncertainty of 

measurement.  Quality of end product largely depends upon the quality of measurement; 

hence measurement is considered to be the key process especially in the field of production. 

Any measurement process accompanies certain uncertainty with it.  There can be many 

assignable and unassignable causes which influence the measurement process and one of the 

most significant cause associated with the measurement is the `uncertainty of measurement’. 

In the present competitive era of specialised technologies quality has become an essential 

requirement for survival which can only be ensured through proper measurement techniques 

with known uncertainty.  Calibration of 3D CMM has a special significance since these 

machines are used for the inspection of components which serve as future standards. 

 

1.1 Calibration of CMM 

Precise physical bodies of known length can be used as reference standards for checking 

length measurement uncertainty of instruments having mechanical sensors.  This fundamental 

task in metrology is of prime importance since in practice the majority of measuring 
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requirements are for the measurement of length. This method has been utilised for calibrating 

3D CMM of SIP Switzerland make using the step gauge of KOBA, Germany make. The step 

gauge is of castellated configuration and in it a large number of forward and backward facing 

gauge faces are lined up along a single line of measurement. This line of measurement is 

same for measurements between any two faces. The gauge faces are well protected and the 

actual gauge points are situated on the neutral fibre of the holder and this means that there are 

no first-order changes in length if the state of bending changes. 

 

1.2 Length Measurement Uncertainty of CMM 

Length measurement uncertainty is defined as the uncertainty with which a CMM can 

determine the distance between two points located on parallel surfaces. The length 

measurement uncertainty u is specified in a simplified form as a length-dependent parameter 

 

u  =  A  +  KL    B                                                                                                                  (1) 

 

here A, K and B are constants and L is the measured length (Figure 1) (Catalogue No. 

6100/E/01/2000, 2000). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Expression of uncertainty VS length measured 

 

In our present discussion, we have taken into account only one-dimensional length 

measurement uncertainty (1D length measurement uncertainty), for which the equation (1) 

can be written in the following form. 

 

u1   =  A1   +  K1 L1    B1                                                                                                        (2) 

 

This is valid for measurement of the distance between parallel surfaces whose surface normal 

lines are, with a good approximation, in a coordinate line of the measuring machine.  One-

dimensional length measurement uncertainty can be evaluated by two means.  Firstly, by 

theoretically calculating the overall uncertainty taking into account all the main contributory 

factors which can influence the correctness of measurement results, secondly, by actually 
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plotting the deviation of measured data from true value and thus graphically ascertaining the 

measurement uncertainty. As shown by the above relationship, length measurement 

uncertainty increases with the length measured, hence for our discussion we have taken two 

cases, Case I for II
nd minimum length i.e. 39.932 mm and Case II for II

nd
 maximum length 

i.e. 359.724 mm and results obtained by theoretical and graphical methods have been 

compared for these lengths. 

 

2. Uncertainty Estimation by Universal Method 

In the present day era of global trade, it is extremely essential to adopt an internationally 

agreed common method for evaluation and expression of uncertainty of measurement.  In 

view of the above requirement, at the initiative of International Committee for Weights and 

Measures (CIPM), a universal method was suggested by International Bureau of Weights and 

Measures (BIPM) ‘Working Group’ on the ‘Statement of Uncertainty’.  As we all know that 

the Conventional Method of uncertainty evaluation is being replaced by this new ‘Universal 

Method’, we have used ‘Universal Method’, for our calculation of measurement uncertainty. 

The uncertainty of the result of a measurement generally consists of several components, 

which may be grouped into two categories according to the method used to estimate their 

numerical values (Taylor et al., 1994). 

 

Type A: those which are evaluated by statistical method (random uncertainties). 

Type B: those which are evaluated by other means (systematic uncertainties). 

 

2.1 Type ‘A’ Evaluation of Standard Uncertainty 

Type `A’ evaluation of standard uncertainty is based on statistical method and is calculated 

from the standard deviation of the mean of a series of independent observations. To evaluate 

one-dimensional length measurement uncertainty of CMM, step gauge is aligned along x axis 

and 19 successive faces were measured with five observations of each length. Measurements 

are taken up to 380 mm as maximum range of CMM along x axis is 400 mm. Measurement 

data is given in the Table 1. 

 

Type ‘A’ inputs are usually linked to repeatability. In our experiment we have taken 5 

observations for each length under same conditions of measurement.  For each length Type-A 

standard uncertainty UA associated with the mean value (q) can be calculated from the 

estimated standard deviation of the mean (NABL, 1994; Taylor et al., 1994) i.e. 

 

UA  =   s (q ) = 
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Here,  
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Mean valueq is given by 

1

1

n
q q

in i

 

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From equation (3) Standard Uncertainty for nominal length 39.932 mm is obtained as 

UA  =  s (q )  =   0.245 m. 

 

 

Table 1. Measurement data collected 
 

S. No 
Nominal length 

( in mm ) 

Observations ( in mm ) 

I II III IV V 

1. 20.000 20.000 20.000 20.000 20.001 20.000 

2. 39.932 39.933 39.933 39.932 39.932 39.933 

3. 59.933 59.933 59.932 59.933 59.933 59.933 

4. 79.927 79.928 79.928 79.928 79.928 79.928 

5. 99.928 99.928 99.929 99.928 99.929 99.929 

6. 119.913 119.915 119.913 119.913 119.914 119.915 

7. 139.914 139.914 139.914 139.913 139.916 139.915 

8. 159.919 159.920 159.920 159.920 159.920 159.920 

9. 179.919 179.919 179.919 179.919 179.920 179.920 

10. 199.872 199.873 199.873 199.873 199.873 199.873 

11. 219.873 219.873 219.874 219.875 219.874 219.875 

12. 239.815 239.816 239.816 239.816 239.816 239.816 

13. 259.815 259.816 259.816 259.815 259.817 259.816 

14. 279.741 279.743 279.742 279.742 279.742 279.742 

15. 299.741 299.742 299.741 299.741 299.744 299.743 

16. 319.729 319.729 319.728 319.729 319.729 319.729 

17. 339.729 339.731 339.729 339.728 339.732 339.729 

18. 359.724 359.726 359.725 359.724 359.725 359.725 

19. 379.725 379.726 379.724 379.724 379.728 379.727 

 

 

2.2 Type ‘B’ Evaluation of Standard Uncertainty 

This type of evaluation of standard uncertainty is based on scientific judgement using all the 

relevant information available, which may include (Taylor et al., 1994) previous 

measurement data, experience with or general knowledge of the behaviour and property of 

relevant materials and instruments, manufacturer’s specifications, data provided in calibration 

and other reports, uncertainties assigned to reference data taken from handbooks. 

 

In our experiment, following are the possible factors identified which contribute significantly 

in the uncertainty of measurement. 

nsobservatioofnumbern 

measuredlengthofvalueindividualqi 

valuemeanqi 
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1. Uncertainty due to deviation of mean calibration temperature from 200 C on account of 

different co-efficient of linear expansion () of step gauge and CMM. 

 

Here, 

 (step gauge) =11.5 x 10-6    mm/ 0 C, 

 (CMM) = 10.5 x 10-6     mm/  0 C, 

Starting calibration tempr     = 170 C, 

End calibration tempr           = 180 C, 

Mean calibration tempr        = 17.50 C. 

 

Uncertainty contribution (a1) 

a1 = (length measured) x (deviation of mean calib. tempr from 200 C) x (difference in  

values) 

= 0.0399 x (20 – 17.5) x (11.5 x 10-6 – 10.5x 10-6) 

= 0.0998 m. 

 

This uncertainty contribution (a1) follows a rectangular probability distribution (Shankar, 

1999) hence standard uncertainty due to a1 is given by 

U1   =  a1 / 3  =  0.0576 m. 

 

2. Uncertainty quoted in step gauge calibration certificate 

U = (0.2 + 0.8 x L) m at 95%  Confidence Level, 

 

where L is the length measured in meter. Corresponding uncertainty contribution at L = 

0.0399 meter 

a2  = 0.2 + 0.8 x 0.0399 

= 0.2319m. 

 

This uncertainty contribution follows a normal probability distribution hence standard 

uncertainty due to a2 is given by 

U2 = a2 / 2 

 

(here dividing factor 2 has been taken since confidence level mentioned in standard’s 

calibration certificate is 95%). Hence, 

U2  =  0.2319/ 2=  0.116 m. 

 

3. Uncertainty contribution due to variation of temperature during calibration ( 0.5 C) for 

the entire range 

a3   =  range X variation in tempr  X  value of step gauge 

= 0.0399 X 0.5 X 11.5 X 10-6= 0.229 m. 
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This follows a rectangular probability distribution, hence standard uncertainty due to a3 is 

given by 

U3  =  a3 /  3= 0.132 m. 

 

4. Uncertainty contribution due to resolution of CMM  

a4   =  ½ (resolution) =  0.5 m. 

 

This also follows a rectangular probability distribution, hence standard uncertainty due to a4 

is given by 

U4  = a4 /  3= 0.289 m. 

 

5. As per the uncertainty quoted in the calibration certificate of the step gauge, described in 

point no. 2 above, if the error in nominal length of step gauge is compared with the slip 

gauges of equivalent length, the grade of step gauge can be safely assumed to be grade 0, for 

the purpose of ascertaining flatness and parallelism error (Indian Standard, IS: 2984, 2003; 

Catalogue No. 1000/97E, 1997). 

 

Uncertainty contribution due to flatness error of measuring faces of step gauge (Indian, 2984) 

 

a5 = 0.1 m. 

 

As this follows a rectangular probability distribution, standard uncertainty due to a5 is given 

by 

U5 = a5 /  3==  0.0577 m. 

 

6. Uncertainty contribution due to parallelism error of measuring faces of step gauge (Indian, 

2984) 

a6 = 0.1 m. 

 

With rectangular probability distribution, the standard uncertainty contribution due to a6 

becomes 

U6 = a6 /  3=  0.0577 m. 

 

2.3 Combined Standard Uncertainty 

The combined standard uncertainty of a measurement result Uc, is obtained by combining the 

individual standard uncertainties, whether arising from a Type `A’ evaluation or a Type `B’ 

evaluation, using the usual method for combining standard deviations.  

Thus  

Uc  =   [ UA2 + U1
2 + U2

2 + U3
2 + U4

2  +  U5
2

 + U6
2 ] 

Uc  =  0.429 m. 
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2.4 Expanded Uncertainty 

Often it is required to have a measure of uncertainty that defines an interval about the 

measurement result y within which the value of the measurand Y can be confidently asserted 

to lie.  The measure of uncertainty intended to meet this requirement is termed expanded 

uncertainty `U’ and is obtained by multiplying Uc by a coverage factor `k’. 

 

Thus U  =  k.Uc 

 

And it can be confidently asserted that 

y – U   Y   y + U, 

 

which is commonly written as  

Y  =  y   U. 

 

In general, the value of coverage factor k is chosen on the basis of the desired level of 

confidence to be associated with the interval defined by U= k.Uc.  When the normal 

distribution applies k = 2 defines an interval having a level of confidence of approximately 95 

percent (Taylor et al., 1994; Shankar, 1999). Hence for Case I expanded uncertainty becomes 

 

UI  =  2 x 0.429 =  0.858 m   (at 95% CL). 

 

Similar calculations can be repeated for Case II i.e. for length 359.724 mm. Expanded 

uncertainty for Case II becomes 

UII  =  2.796  m    (at 95% CL). 

 

2.5 Uncertainty Estimation by Experimental Method 

In magnitude, length measurement uncertainty is given as the difference between the length 

value La indicated by the co-ordinate measuring machine or printed or displayed by its output 

processor and the true value Lr given by calibration certificate of step gauge, i.e. 

 

 La – Lr  u  in at least 95% of all cases Here La can be both larger and smaller than Lr For 

the purpose of graphic analysis, the differences L = La – Lr are found and these differences 

are plotted, with the correct signs, for the individual measured lengths and runs in a length 

measurement uncertainty grid (Figure 2). The top and bottom boundary lines produce a 

funnel shaped outline with the neck of the funnel measuring 2A (where A is a figure specified 

for length measurement uncertainty irrespective of length).  95% of all the test measurements 

must lie within or on the boundaries.  A quantitative analysis is made simply by counting the 

number of measurements which lie outside the boundary lines. Right side of Figure 2 shows 

the frequency plot which is a normal curve.  Mean value of deviation comes 0.726m, which 

indicates the error. This error can be compensated from all the measured values. 
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Figure 2. Measurement error plot and associated normal curve 

 

3. Conclusion 

If top and bottom boundary lines in Figure 2   are drawn through the two points given by 

universal method of uncertainty evaluation at 39.932 mm and 359.724 mm taking mean 

deviation line as datum, it can be seen from the plot that  4  points are falling outside the 

funnel shaped outline.  This satisfies our condition of 95% confidence level since our total 

observations are 95 and hence 4.75 points may lie outside the funnel shaped outlines.  From 

Figure 2 as well as from the results of universal method, a generalised relationship between 

`length measured’ and `measurement uncertainty’ can be derived as per equation (2). 

 

U1  =  (0.6 + 6.1 L) m    2.8  m, where L is in meters. 

 

Experimental method of uncertainty evaluation gives the true uncertainty of measurement 

process, but this process is quite elaborate and needs several readings to be taken for each 

step of measurement.  The above comparison between `Experimental Method’ and `Universal 

Method’ shows that similar results can also be obtained from `Universal Method’ with lesser 

efforts but with careful selection and determination of various contributory factors and hence 

Universal Method can be used for the evaluation of measurement uncertainty of mechanical 

measuring instruments. 
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