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Abstract 

A method is proposed to compute the theoretical estimation of physical parameters and stability of differential 

rotation for polytropic stars including mass variation. The law of differential rotation is assumed to be in the form
4

3

2

21

2 )( sbsbbs  , the angular velocity of rotation (ω) is a function of distance (s) of the fluid element 

from the axis of rotation. Utilizing the concepts of Roche- equipotential and averaging approach of (Kippenhahn 

and Thomas, 1970) in a manner, earlier used by (Saini, et al., 2012) to incorporate the effects of differential 

rotation on the equilibrium structure of polytropic stellar models. The inner structure of differentially rotating 

polytropic models of a star is demonstrated by calculating various physical parameters for suitable combinations 

of parameters. 
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1. Introduction 
Almost each known star rotates about its axis and it is also observed that the rotation may be a 

solid body rotation or differential rotation. In case of binary star system, primary component 

(more massive) generally remains larger in comparison to its secondary component. Most stars 

of binary systems are rotating uniformly and revolving around their common centre of mass. It 

is expected that some of the stars in binary system rotates differentially about their axis. 

Differential rotations influence the inner structures and equilibrium configurations of such 

stars. It is also expected that the equilibrium structure of a star in binary system is also 

influenced by the combined effects of differential rotation and tidal forces. 

 

The physical parameters related to the structures of differentially rotating gaseous spheres are 

calculated using the law of differential rotation from 4

3

2

21

2 )( sbsbbs  , where )(s is 

angular velocity of rotation of a fluid element at distance s from the axis of rotation and 1b , 2b  

and 3b  are numerical constants. Our technique utilizes the averaging approach of (Kippenhahn 

and Thomas, 1970) and concepts of Roche-equipotential in a manner earlier used by (Saini, et 

al., 2012) to incorporate the effect of differential rotation on the rotationally distorted stellar 

models. The inner structure of differentially rotating polytropic models with the polytropic 

indices 1.5, 2.0, 3.0 and 4.0 have been computed through various physical parameters with 

suitable combination of the parameters 1b , 2b  and 3b . To determine the equilibrium structures 

of differentially rotating polytropic models of star a, general problem is investigated. 
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As per literature, primarily theory based on distorted polytropes was developed by 

Chandrasekhar (1933). Since then several authors (Lal et al.,2006; Lal et al., 2012) have 

addressed themselves to these problems. Kopal (1983), Mohan et al. (1990; 1992; 1994), Saini 

et al. (2012), Pathania, et al. (2013), have observed that the actual equipotential surfaces of a 

rotationally and tidally distorted star are approximated by equivalent rotationally and tidally 

distorted Roche equipotentials. Lal et al. (2005; 2006),  have applied this approach on white 

dwarf stars as well as polytropic stars and hence developed a modelling to determine their 

equilibrium structures. In this approximation, averaging approach of Kippenhahn and Thomas 

(1970) and results of the Roche equipotentials obtained by Kopal (1983) are used to incorporate 

the rotational and tidal effects up to second order of smallness in the stellar structure equations. 

Mohan et al. (1992) given their contribution for determining the equilibrium structures of 

differentially rotating or tidally distorted gaseous spheres. Lal et al. (1994) considered the 

possibility of using this approach to obeying a generalized differential rotation. Once the Roche 

equipotential surfaces of a differentially rotating star are approximated by modified Roche-

equipotential, the approach used by Saini et al. (2012), may now be used to evaluate explicitly 

the values of modified physical parameter S , V , g  and 
1

g . 

 

2. Proposed Law of Differential Rotation 

The law of differential rotation used in the present paper is  

,)( 4

3

2

21

2 sbsbbs             .                              (1) 

 

where sinrs   is a non-dimensional measure of the distance of a fluid element from the axis 

of rotation passing through its centre. This law can also be obtained by the expansion of Taylor 

series of this form )( 22 sf  up to second order of smallness. This law generates a variety 

of differential rotations, which are commonly expected in stars, but is also in a form, which it 

can be conveniently subjected to the type of mathematical analysis, which is carried in this 

paper. Clement (1969) had also represented his study on the oscillation of stars. 
 

2.1 Stability of Differential Rotation  

In principle, the instantaneous angular momentum distribution within a star should be 

calculable from initial conditions. Obviously, this is an impossible task at the present level of 

knowledge of subject, even when the initial conditions are known. The alternate procedure, 

which is now widely used, is to choose a study angular momentum distribution by ruling out 

those of rotating configurations that are (dynamically and thermally) unstable, as well as those 

that do not comply with the simultaneous conditions of mechanical and thermal equilibrium. 
 

 According to Solberg criterion, the configurations rotating with some prescribed angular 

velocity ),,( zs   degenerate into pseudo-barotropic configuration, and the stability 

condition becomes  

  0. >.2 ss
ds

d
                                           (2) 

 

Therefore, in stable homentropic star (i.e. grade 0S ,  S  being the entropy per unit mass) 

the angular momentum per unit mass must necessarily increase outward. It generalizes to 

homentropic bodies the well know Rayleigh criterion for an inviscid and incompressible fluid. 

As was shown by Randers, the stability criterion (2) may be easily explained by the 
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conservation of angular momentum per unit mass of each fluid particle, when it is slightly 

displaced from its equilibrium position. Indeed, when condition (2) is obtained, any mass 

element moving outward lacks angular momentum compared to the angular momentum of the 

material in equilibrium about its new location. This lack of angular momentum means a lack 

of centrifugal force, and a resulting deceleration of the out ward motion. Similarly, if a mass 

element implied inward, the excess of angular momentum moving inwards tends to derive the 

fluid particle out again thereby stopping the inward motion. 

 

The results obtained for axis-symmetric motion of Solberg have been later summarized in the 

form of certain proposition by (Hoiland, 1941). His criterion says that baroclinic star in 

permanent rotation is dynamically stable with respect to axis-symmetric models if and only if 

following conditions are satisfied: - 

 

 The entropy per unit mass S never decreases outward. 

 On each surface S = constant, the angular momentum per unit mass 2

s  increases as move 

from the poles to equator. 

 

In a similar manner, Stoeckly (1965) suggested a stability criterion for a differentially rotating 

model against local perturbation. According to this criterion a model rotating differentially 

according to the law ),(s   is stable if   0 >.2 ss
ds

d
 , for all s from centre to surface. 

 

For a star rotating differentially according to the law (1), to be stable according to Stoeckly 

criteria (1), must be non-negatives for all values of s inside the star. The stability of each of 

differential rotations considered by us (given in table 1) has been analyzed according to this 

criterion and the results of this analysis are presented in the same table. 
 

3. The Roche-Equipotentials of Differentially Rotating Gaseous Sphere Including the 

Effect of Mass Variation on the Potential 

The concept of Roche- equipotential and Roche limit has often been used in literature to 

investigate the physical parameters and stabilities of binary stars. While computing Roche 

equipotentials, the whole mass of the sphere is assumed to be concentrated at its centre. This 

approximation, through reasonably correct for highly centrally condensed stellar models, is not 

true for the stars which are not highly condensed on the centre. The concept of Roche 

equipotentials, therefore, needs to be modified in case of stars which are not highly centrally 

condensed taking into account the effect mass variation on its equipotentials surfaces inside 

the star. The result on Roche equipotential based on this modification and which are practical 

interest to the present study are summarized below.  

 

M0 is assumed to be the entire mass of the differentially rotating primary component and it is 

more massive than its companion star of mass M1 (i.e., M0 > M1). Suppose R is the mutual 

separation between these two masses from center to center and the position of the two 

components of this binary system is referred to a rectangular system of Cartesian co-ordinates 

which have the origin at the center of gravity of mass M0, the x axis along the line joining the 

centers of the components, the z axis perpendicular to the plane of the orbit of the two 

components, M0(r) is the interior mass of the primary component. The total potential   due 
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to the gravitational, rotational and other disturbing forces acting an arbitrary point ),,( zyxP

may be expressed as: 














 22

10

12

1

10 )(
2

1)(
y

MM

RM
x

r

M
G

r

rM
G 

,

                    (3) 

 

where 
2222 zyxr  ,  and    2222

1 zyxRr  . 

 

The distances of point 𝑝 from the centre of gravity are represented through r  and 1r .Total 

potential   is the sum of potentials arising from the mass of the primary component 0M , 

disturbing potential arising by its companion star of mass 1M  and potential arising from the 

centrifugal force (Figure 1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Axis of reference for Roche co-ordinates 

 

 

The angular velocity 𝜔 is identical with the Keplarian angular velocity in close binary system, 

so that 
3

102
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MM
G


    If we insert relations (1) in (2) the equation (2) may be expressed 

in terms of polar spherical coordinates:   

 

 rrx  sincos  rry  sinsin ,  rrz  cos                  (4) 
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where
)(2 100

2

1

0 MMM

M

GM

R





 ,

0

1

M

M
q   and 

0

0 )(

M

rM
t  are non-dimensional parameters 

and 2  is non-dimensional unit of  
3

0

R

GM
. 

 

The surfaces generated by setting  =constant is represented by left hand side of equation (5) 

and referred as Roche equipotential. These approximate the equipotential surfaces of a star in 

a binary system. The form of Roche equipotential depends entirely upon the value of   and 

corresponding equipotential consists two separate ovals, if  is large, closed around each of 

the two mass points. The right hand side of equation (5) can be large only if r  or 

  2/12

1 21 rrr    becomes small it must be nearly equal to r  and 1r , if the right hand side 

of equation (5) is to be constant. Therefore, large values of correspond to equipotentials 

which differ little but spheres. With reduction in the value of   in the expression (5), the ovals 

define by expression (5) become increasingly elongated in the direction of the centre of gravity 

of the system until for a certain critical value of   (characteristic of each mass ratio), both 

ovals will unite in a single point on the 𝑥-axis to form a dumb-bell like configuration. These 

limiting value of  are called Roche limits. Two ovals of their Roche limit filling by any pair 

of stars are called contact binaries. The connecting part of dumb-bell open up for still smaller 

values of   and the corresponding equipotential surfaces envelope both the bodies. 

 

4. Physical Parameters S , V , g  and 
1

g  of Stellar Models  

Expressions for volume, surface area and other physical parameters of differentially rotating 

polytropic models of a star are investigated. For obtaining the expressions of physical 

parameters of a polytropic star, we used the approach earlier used by Saini et al. (2012) for 

obtaining the equilibrium structures of differentially rotating and tidally distorted Prasad 

models including the effect of mass variation inside the star, and Lal et al. (2006) for obtaining 

the equilibrium structures of polytropic stars having differential rotation. For computing the 

distortion effects, the actual equipotentials surface of star are approximated by Roche-

equipotentials and (Kopal’s, 1983) result on the Roche-equipotentials are then used to express 

the problem in a form convenient for numerical work. In order to introduce the concept of 

Roche-equipotentials, assume a mass M and radius R, for rotating configuration, the total 

potential  of a fluid element is given by the equation of hydrostatic equilibrium may be 

written in the form 

 

22 )(
2

1
sddVd   or ,)(2 sdssV    

i.e. sdss
r

rGM
 )(

)( 20                                 (6) 

 

Assuming Roche model for a differentially rotating gaseous sphere the gravitational potential

 
r

rGM
V 0 , at a point p at distance  r from the centre.  rM 0

 is mass interior to sphere of 
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radius r and
0M  is the total mass of the rotating gas sphere. Substituting these in (6) and 

multiplying
0GM

R , it reduced as: 

)2(2

2

1

/ 0

sd
GM

R

Rr

t
  ,                                          (7) 

 

where
0

0 )(

M

rM
t  . 

Since dimension of s  is same as that of R, assuming 2 to have a dimension of
3R

GM o .the non-

dimensional form of (7) can be represented as : 

 )(
2

1 22 sd
r

t
  .                                            (8) 

 

Using, 4

3

2

21

2 )( sbsbbs 
 
with )1( 222  rs in (8) we have 

        428

32

3262

231

224
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222

1 1
4

1
1)2(

6

1
1

2

1
1

2

1
  rbbrbbbrbbrb

r

t
 

 52102

3 1
10

1
 rb

.
                                                       (9) 

In absence of rotation 0321  bbb , the Roche equipotential (9) reduced to 
r

t
  and if we 

assume solid body rotation 032  bb
 
and  1t ,equation (9) is  reduced to the expression 

given by (Mohan et al, 1978). Now,   is the non-dimensional form of the total potential:  (

GM

R
) , ,cos,sin,sin   u  

 

With the assumption  constant (Kopal, 1983) developed the Roche-equipotential and his 

approach and analysis is used here to develop the relation for co-ordinates  zs ,, of an element 

of Roche-equipotential as:  
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2312
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where 


t
r 0  and  21 x . In above equation, terms of 21 ,, bbt , 3b  and 0r  are retained up 

to third and tenth order of smallness, respectively.  The shapes of various equipotential surfaces 

of differentially rotating gaseous spheres have obtained by setting r constant. In equation 

(10) R is the radius of undistorted model.  
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Following (Kopal , 1983),  (Mohan et al., 1990) and (Lal et al.,2006), the explicit expression 

for S , V , g  and 
1

g , using the law of differential rotation given by equation (1) are obtain as  

 

9

0

3

13

8

0212

7

03

6

0

2

12

5

02

3

01

33

0
5

8

7

12

35

8

5

8

5

21
1

3

4
rb

t
rbb

t
rb

t
rb

t
rb

t
rb

t
RrV 







  

  ....38
105

16 10

0

2

2312 



 rbbb

t
                                                                                                                 (11) 

 

Following the averaging technique of (Kippenhahn and Thomas,1970)  for a topologically 

equivalent sphere of radius r , we have the relation:- 

3

3

4
 rV                                                                   (12) 

 

On inserting (11) in (12), we get 
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The surface area of Roche equipotentials surface  constant is given by 
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The explicit expressions of gravity g and its inverse 1g  can be shown to be respectively. 
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In the above expressions, M is the mass contained with Roche- equipotential. 
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Table 1. Behaviour of angular velocity for certain differentially rotating stellar models 
 

 

 

Model 

Number 

Values of various 

parameters in the law 

of differential rotation
4

3

2

21)( sbsbbs   

Behavior of the square of the angular velocity ω2 from 

axis of rotation (s=0) to equator(s=1) in the equatorial 

plane/(from pole to equator on the surface), for a 

differentially rotating model in which s is in the 

equatorial radius Re 

Stability of 

the model 

according to 

Stoeckly 

criterion 

b1 b2 b3 

1 0.0 0.0 0.0 
Non-rotating model Stable 

2 0.1 0.0 0.0 
Solid body rotation about axis of rotation in which ω2 

is 0.1 throughout the model 

Stable 

3 0.0 0.1 0.0 ω2 increases gradually from 0 to 0.104651 Stable 

4 0.0 0.0 0.1 
ω2 increases first slowly and then more rapidly from 0 to 

0.106294 

Stable 

5 0.1 0.1 0.0 
ω2 increases gradually from 0.1 to 0.209551 Stable 

6 0.1 0.1 0.1 
ω2 increases rapidly from 0.1 to 0.341509 Stable 

7 0.1 0.2 0.1 
ω2 increases still more rapidly from 0.1 to 0.476902 Stable 

8 0.1 -0.05 0.0 ω2decreases  gradually from 0.1 to 0.048772 Stable 

9 0.1 -0.1 0.05 
ω2 decreases first slowly than rapidly and then again 

slowly from 0.1 to 0.050027  

Stable 

10 0.1 -0.15 0.1 

ω2 decreases first slowly from the value 0.10at s=0 but 

later starts increasing to the value 0.051297 at s=1 

Stable 

11 0.1 -0.02 0.4 

ω2 first remains practically constant at about 0.1 value 

from s=0 to s=0.3 and then starts rapidly increasing to 

the value 0.645424 at s=1 

Stable 

12 0.04 -0.01 0.0625 

ω2 first remains practically constant at about 0.04 value 

from s=0 to s=0.45 and then starts rapidly increasing 

outward to the value 0.096754 at s=1 

Stable 

13 0.1 0.02 -0.05 

ω2 increases first slowly from its value 0.1 at s=0 up to 

s=0.45 and then decreases to the value 0.066944 at s=1 

Stable 

14 0.1 -0.1 0.0 
ω2decreases  from its value 0.1 at s=0 to value 0 for s=1 Unstable 

15 0.04 -0.16 0.16 

ω2 first decreases  from its value 0.04 for s=0 to the value 

0 at s=0.7 and then again increases rapidly outwards to 

the value 0.042812 at s=1  

Unstable  
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Figure 2. Graphs of ω2 versus s2 certain differentially rotating stellar models 

 

5. Conclusion  

The present work assumes the law (1) of differential rotation in which ‘s’ is assumed to be the 

non-dimensional measure of distance and b1, b2  and b3   are constants. Stability of various type 

of polytropes have also been analyzed in this paper by using Stoeckly criterion, presented by 

equation (2). Stability and behavior of angular velocity of some models have been represented 

in Table 1. We also used Stoeckly criterion to examine weather assumed stellar models in 

Figure 2 are dynamically stable or not. Using several idealized models for the non-uniform 

density within primordial gas clouds we are now able to compute the appropriate polytropic 

structures of different indices.  

  

Study of stability is considered to be dependent upon the variation of angular velocity of 

particle with variation in ‘s’, which is the distance of particle from center. Variations in angular 

velocities of these models along with distance have also been represented through the graphs. 

Roche equipotential derived in this paper for obtaining the structure and stability of 

differentially rotating gaseous spheres provides valuable information about the variation of 

various structural identities with radius. Roche equipotential assumes the entire mass of star to 

be concentrated at the center of sphere which provides a macro structure of star by assuming 

very less influence of convection and turbulences. Due to this assumption present study 

becomes less useful in case of highly turbulent and active star. After obtaining the structure, 

explicit expressions of modified distortion parameters have also been obtained by using the 

approach of averaging approach of (Kippenhahn and Thomas, 1970) and results of the Roche 

equipotentials obtained by (Kopal, 1983) are used to incorporate the rotational and tidal effects 

up to second order of smallness in the stellar structure equations. 
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