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Abstract 

The advancements in the field of internet and cloud computing has resulted in a huge amount of multimedia data 

and processing of this data have become more complex and computationally intensive. With the advent of the 

scalable, inexpensive Graphics Processing Units (GPUs) with very high computation power, the processing of 

such big data has become less expensive and efficient. Also fast developments happening in the field of 

programming languages and different programming and debugging tools adds to the ease of GPU programming. 

However, utilizing the resources of the GPU effectively and fully is still a challenge. The goal of this paper is to 

present a brief review of NVIDIA’s state of the art Fermi architecture and to survey different programming and 

optimization strategies adopted by researchers’ to accelerate the GPU computation. This survey aims to provide 

researchers with knowledge about the different programming and optimization techniques in GPU programming 

and to motivate them to architect highly efficient parallel algorithms by extracting maximum available 

capability of the GPUs. The paper also explores some recent trends in the field of GPU programming.  
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1. Introduction 

Graphics Processing Unit (GPU) has entered the General Purpose Computing Domain 

(GPGPU) for over a decade now. In comparison to the single processor CPU, GPGPUs have 

very high computation power. According to the literature (Brodtkorb et al., 2013; Kirk et al., 

2016) when comparing the theoretical peak bandwidth and the gigaflops performance there is 

a huge gap between CPU and the GPU. CPUs basically are optimized for executing a series 

of operations in order. Modern CPUs though are very efficient in terms of flexibility and 

performance; they have very complex control hardware and are very expensive in terms of 

power. GPUs on the other hand have very simple control hardware and are more power 

efficient. While the CPUs are optimized for the latency, the GPUs concentrate on optimizing 

the throughput. Even though other types of accelerator cores like Field Programmable Gate 

Arrays (FPGAs) and Cell Broadband Engines (Cell BEs) are available, GPUs have gained 

much popularity than these in the last few decades. This is because programming FPGAs and 

Cell BEs for general purpose computing is much difficult than GPUs and compared to them 

GPUs are easily available as most of the recent desktop and laptop computers now come with 

a dedicated GPU (Brodtkorb, et al., 2013). Currently, there are three major vendors of GPU 
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in PC market and they are Intel, AMD and NVIDIA. However, NVIDIA is the most 

dominant vendor in the academic environment and therefore we will be focussing on 

NVIDIA GPUs and NVIDIA CUDA as the programming language in this paper. 

 

Traditional GPGPU development was based on graphics function library like OpenGL and 

Direct 3D and was largely used by professionals, who were familiar with the graphics API. 

However, the emergence of Compute Unified Device Architecture (CUDA), NVIDIA’s 

parallel architecture implementation, removed these inconveniences as it provides APIs for 

programmers to develop parallel applications using the C programming language. The 

programmers write C programs with CUDA extensions and target a general purpose 

massively parallel processor (NVIDIA 2010) and thus a dramatic increase in computing 

performance is achieved by harnessing the power of the GPU. The aim of this paper is to give 

the readers a brief overview of the GPU programming model, debugging tools, programming 

as well as optimization techniques adopted for the GPU codes. First we start with a short 

overview of the state of the art Femi GPU hardware in section 2. Further, in section 3 we give 

an overview of the programming model and the commonly used debugging tools. A detail 

review of the common programming strategies adopted by the GPU programmers is given in 

section 4. In section 5 we present a detail review of the different optimization strategies 

usually adopted in the GPU programming. In section 6 we discuss some of the recent trends 

in GPU computing and different GPU architectures launched after the Fermi architecture. 

Finally, in section 7 we conclude the paper. 

2. Fermi GPU Architecture 

Fermi architecture is considered as NVIDIA’s first complete GPU (Patterson, 2009; 

Wittenbrink et al., 2011) as it delivered almost all of the features required for the most 

demanding high performance computing applications. It was the most significant leap 

forward since the G80 architecture. Figure 1a shows the high level block diagram of the first 

Fermi chip. As shown in figure the Fermi architecture consists of 512 accelerator cores called 

CUDA cores. Each core includes a fully pipelined integer arithmetic and logic unit and 

floating point unit that execute one integer or floating point operation per clock cycle. Each 

CUDA core is organized into 16 Streaming Multiprocessors (SMs) each with 32 CUDA 

cores. There is 768KB L2 cache shared across all 16 multiprocessors and a 384-bit GDDR5 

DRAM memory interface. The host interface shown in Figure 1a is used to connect the GPU 

to the CPU via PCI-express bus. Further the Giga Thread global scheduler distributes the 

thread blocks to the multiprocessor thread schedulers. Figure 1b shows a single SM 

consisting of 32 cores where each of them can execute one floating point or integer 

instruction per clock. Each SM also has 16 load-store units for memory operations, four 

special-function units, a 4K word register file, and 64K of local SRAM split between cache 

and local memory. Special Function Units (SFUs) are used to execute instructions like sine, 

cosine, square root and interpolation. The threads are scheduled in groups of 32 parallel 

threads called warps. There are two warp schedulers and two instruction dispatch units as 

shown in Figure 1b. This allows two warps to be issued and executed concurrently. Further, 
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there is a 64KB on chip memory which can be configured as 48KB of shared memory and 

16KB of L1 cache or vice versa (Patterson, 2009; Wittenbrink et al., 2011; Brodtkorb et al., 

2013). 

 

 

  
  (a)       (b) 

 

Figure 1. a) Fermi Architecture consisting of 16 Streaming Multiprocessors (SMs)  b) Single SM 

(Patterson, 2009; Wittenbrink et al., 2011) 

 

 

3. GPU Programming Model and Debugging Tools 

CUDA programs are written in ‘C for CUDA’, which is a subset of C with extensions for 

executing functions in parallel. The programs are compiled using nvcc, NVIDIA’s CUDA 

compiler. A CUDA program calls parallel kernels which executes, in parallel, across a set of 

parallel threads. The programmer or compiler organizes these threads in thread blocks and 

grids of thread blocks. A kernel program is instantiated on the GPU on a grid of parallel 

thread blocks. Each thread within a thread block executes an instance of the kernel, and has a 

thread ID within its thread block, program counter, registers, per-thread private memory, 

inputs, and output results. A thread block is a set of concurrently executing threads that can 

cooperate among themselves through barrier synchronization and shared memory. Every 

thread block has a unique block ID within its grid. A grid is an array of thread blocks that 

execute the same kernel, reads inputs from global memory, writes results to global memory, 

and synchronizes between different kernel calls. There is a per-thread private memory space 

used for register spills, function calls and C automatic array variables for every thread in the 

CUDA parallel programming model. Each thread block has a per-block shared memory space 

used for inter-thread communication, data sharing, and result sharing in parallel algorithms. 

Grids of thread blocks share results in global memory space after kernel-wide global 
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synchronization. CUDA concept of grid of blocks is as shown in Figure 2a. The figure shows 

the 2D hierarchy of blocks and threads normally used to process an image. Programmer 

defines the required number of thread blocks and it is the GPU which decides which thread 

blocks to be run on which SMs. This abstraction is one of the biggest advantages of CUDA as 

the hardware can run things independently and efficiently. CUDA guarantees that all threads 

in a block run on the same SM at the same time and that all blocks of a kernel finish 

execution before executing the next kernel.  

 

 

(a)       (b) 
 

Figure 2a. CUDA concept of a grid of blocks (Kirk and Wen-Mei, 2016; Wen-Mei, 2011), 2.b. Device 

Memory Spaces (Wen-Mei, 2011) 

 

 

Figure 2b shows the CUDA memory model. CUDA devices use several memory spaces, 

which have different characteristics that reflect their distinct usages in CUDA applications. 

These memory spaces include global, local, shared, texture, and registers. Of these different 

memory spaces, global memory is the most plentiful. Global, local, and texture memory have 

the greatest access latency, followed by constant memory, shared memory, and the register 

file. The various principal traits of the memory types are shown in Table 1. 

 

Table 1. Memory types in NVIDIA CUDA and their principal traits (Wen-Mei, 2011) 
 

Memory Location 

on/off chip 

Access Scope Lifetime 

Register On R/W 1 thread Thread 

Local Off R/W 1 thread Thread 

Shared On R/W All threads in block Block 

Global Off R/W All threads and host Host allocation 

Constant Off R All threads and host Host allocation 

Texture Off R All threads and host Host allocation 
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In this section the debugging tools provided by NVIDIA to support the CUDA programming 

is reviewed. There are several powerful CUDA debugging tools that support most of the 

commonly used operating systems. Some examples of such debugging tools are Parallel 

NSight for Microsoft windows and CUDA-GDB available for Linux and Mac. CUDA-GDB 

provides developers a mechanism for debugging a CUDA application on actual hardware at 

real-time. Some features of the CUDA-GDB are listed below (CUDA-GDB NVIDIA CUDA 

Debugger, 2010) 

• user can inspect a specific host thread or a CUDA thread and switch focus to either 

• allows the execution to be paused at any function symbol or source file line number  

• supports stepping GPU code at the finest granularity of a warp 

• address of any variable can be printed to find out its storage location whether it is 

local, shared or global. 

• inspection of any kernel possible 

• supports breaking into hanging or indefinitely looping kernels 

• supports in checking memory error using the command set cuda memcheck on. 

 

Parallel NSight provides conditional breakpoints, assembly level debugging, and memory 

checking and also it is freely available for use. Some features available on Parallel NSight are 

listed below (S3478-Debugging CUDA kernel code, 2013). 

• supports inspecting variable values  

• supports inspecting memory values  

• supports setting both source and data breakpoints 

• supports specifying the debugger context as block level or thread level 

• helps to setup local headless GPU debugging in case of two GPUs 

• massively threaded kernel navigation and run control 

• CUDA memory checker 

• CUDA information tool window showing all CUDA resources. 

 

4. Review on GPU Programming Strategies 

Programming with GPU and getting a speedup much better than many existing CPU code is a 

relatively easy task but extracting maximum advantage of the hardware is really a challenge. 

Different programming strategies are adopted by programmers to utilize the hardware 

available to the maximum. In this section we review some of the programming strategies 

adopted by researchers in order to accelerate the CUDA application (Cornel virtual 

workshop, 2013; Pan American Advanced Study Institute, 2011). 

4.1 Latency Hiding 

GPUs issues instruction in order and when the issue stalls for arguments the GPUs switch 

between threads to hide the math latency. This strategy of the GPU to instantly switch 

between threads can be done efficiently only if there are enough threads launched for the 

execution. This measure of the maximum number of threads that a GPU can run concurrently 

is referred to as occupancy. Several works have been done by researchers to improve the 
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latency hiding in GPUs. In (Lee and Wu, 2014) a latency profiling approach is used for 

effective evaluation of the latency hiding characteristics of the Fermi architecture. From their 

study the authors found that for certain GPU applications like Breadth First Search (BFS) 

even though the context switching effectively hides the latency the performance is limited by 

other factors. In (Kim et al., 2016) a different approach which makes uses of the warp pre-

execution mode is adopted to improve the latency hiding. In the method adopted instructions 

which are independent of the long latency operations are pre-executed while the long latency 

dependent operations are skipped. However, the authors found it very challenging to maintain 

the overall sequential semantics of the program. Although by increasing occupancy the 

memory latencies can be hidden, higher occupancy does not always give high performance. 

Once the memory latencies are hidden there is little performance gain by increasing the 

occupancy. The rule of thumb is that there should be a minimum of 1000 threads per GPU or 

approximately 512 threads per SM.  

 

4.2 Thread Divergence 

Another issue which affects GPU performance is the thread divergence. GPUs execute the 

instructions in a 32 way Single Instruction Multiple Data (SIMD) fashion in which a single 

instruction is issued for a warp (thread vector) of 32 threads. The threads within a warp must 

execute the same instruction at the same time or in other words thread divergence must be 

avoided to ensure good performance. The common scenario of a control flow statement ‘if-

then-else’ in the program can cause thread divergence. Threads in a warp will be required to 

diverge to evaluate the true and the false condition of the if-then-else. Because of the 

restriction that the threads in a warp cannot diverge, the threads executing the true and the 

false condition will not be executing in parallel as expected. While the threads executing the 

‘then’ are active the remaining threads in the warp which evaluated to ‘else’ condition will be 

deactivated and vice versa. This serialization of the threads will result in performance 

degradation. Thread divergence can also result in a deadlock in some cases where there are 

__syncthread() barriers in an ‘if-then-else’ statement as shown in the example program below 

(Cornel virtual workshop, 2013; Pan American Advanced Study Institute, 2011) 

 

if  (threadIdx.x<256){program_then();__syncthreads();}else if (threadIdx.x >=256) 

{program_else();__syncthreads();} 

 

Therefore, to ensure efficiently performing kernels expensive branching operations must be 

avoided and the threads in warp must be optimized to perform the same operation without 

much branching. Some notable techniques adopted by researchers to avoid thread divergence 

is reviewed here. In (Zhang et al., 2010) a run time thread data remapping scheme is adopted 

to handle the thread divergence efficiently. The data sets on which the threads in a warp work 

are switched and the whole warp of threads are made to take the same execution path on a 

conditional branch. Another work in which the data reordering scheme is used for addressing 

the thread divergence problem is given in (Chakroun et al., 2013) in which they parallelize 
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the branch and bound algorithm for solving Flow-shop Scheduling optimization Problems 

(FSP). 

 

4.3 Memory Coalescing 

GPUs perform most efficiently when threads operate on contiguous memory locations i.e. 

when the memory accesses are coalesced. Memory accesses become serialized in case of 

misaligned accesses, sparse memory accesses or non sequential memory accesses and this 

will affect the performance largely. The example code below shows both coalesced and non 

coalesced memory operations (Cornel virtual workshop, 2013; Pan American Advanced 

Study Institute, 2011). 

 

__global__ void program_mem(float *g){ float a=3.14;int i= threadIdx.x; g[i]=a;  

g [i*2]=a;} 

 

The most common method adapted to misaligned memory accesses is data reorganisation. In 

(Wu et al., 2013) two data reorganisation algorithms are proposed padding and sharing 

algorithm. In padding algorithm the memory segments are padded with empty slots thereby 

making the accesses to the segment coalesced. However, this method since reorganizes the 

threads along with the data it can affect other references in the kernel. The sharing algorithm 

operates by shifting all the non-coalesced access from global memory to shared memory 

thereby reducing the duplication of the data. In (Fauzia et al., 2015) a dynamic tool for 

analyzing uncoalesced memory accesses and a framework which remaps the work among the 

threads in a warp is proposed to avoid the uncoalesced memory accesses. 

 

4.4 Data Reuse 

Another factor which affects the GPU performance is the transferring of the data from the 

memory to the processor. Most of the algorithms have heavy memory operations compared to 

the computation operations. The only option available in such cases is to reuse the data and 

keep the frequently used data in the fastest memory available in the device. GPUs have three 

fast memories available which are local, shared and global memory. Local memory which is 

the registers and the L1 cache is the fastest memory and is private to a thread. GPUs have 

limited set of registers available and so allocating large number of threads with the intention 

of increasing occupancy will actually affect the performance as there aren’t enough registers 

to cater to these threads. Next fastest memory is the shared memory which is shared by all the 

threads in a block. With proper usage shared memory can function as fast as registers, 

however, shared memory is also limited like registers to normally (48KB in Fermi) per SM. 

To make proper use of the shared memory data is divided into tiles and the tiles are loaded 

into the memory and operated upon from there. Further, shared memory is divided into 

equally sized smaller sub arrays called banks and these banks can be accessed 

simultaneously. This provides high memory bandwidth as any memory load or store of 

specific number of addresses that span the same number of banks can be serviced 
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concurrently. If multiple threads’ requested addresses map to the same memory bank a bank 

conflict arises thereby making the accesses serial. Different memory access patterns which 

results and do not results in bank conflicts is shown in Figure 3. As shown in Figure 3a left 

and right figures linear addressing with a stride of one 32 bit word and three 32 bit word 

respectively will not result in a bank conflict, whereas in the middle figure linear addressing 

with a stride of two 32 bit word is used and therefore results in a two way bank conflict. 

However, using random permutations and broadcasting, bank conflicts can be avoided as 

shown in Figure 3b. Bank conflict can also be avoided by the technique of memory padding. 

For example, the codes below show a shared memory declaration which can result in bank 

conflict and the modified code which avoids the conflict by padding with one element.  

 

__shared__int sh_mem[tile_width][tile_height] // can result in bank conflict 

__shared__int sh_mem[tile_width][tile_height+1] //padded to avoid bank conflict 

 

Another important point to remember when using shared memory is to avoid the race 

conditions between threads. Thread barriers like __syncthreads () and atomic operations are 

normally used to avoid the race conditions and to ensure that when one thread is accessing 

one memory location no other operation is occurring in the same location. However, atomic 

operations are slower as they serialize the execution. 

 

4.5. Streams 

It is also possible to enhance parallelism in CUDA by launching multiple kernels in parallel 

using CUDA streams. By increasing the number of concurrent streams a higher degree of 

parallelism can be achieved. Stream is an in-order queue of operations which includes kernel 

launches and memory transfers that will be executed by the GPU. Figure 4 shows n+1 

independent streams running in parallel Streams are useful in doing heterogeneous computing 

in which the CPU and GPU works concurrently. While the GPU is busy executing kernel 

launches and memory transfers, the CPU continues to perform its own operations and on 

completion, synchronizes with the GPU for the results. Thus along with the data parallelism 

which is achieved using threads and blocks task parallelism can also be achieved in GPU 

programming using streams.  

 

5. Review on GPU Optimization Strategies  

First step to be followed when optimizing a CUDA program is to identify the performance 

bottlenecks within the program. Three major optimizations considered by default for a GPU 

program is the kernel optimization, memory optimization and latency optimization (Cornel 

virtual workshop, 2013; Pan American Advanced Study Institute, 2011; Patterson, 2009; 

Wittenbrink et al., 2011; CUDA Optimization Techniques 2010). 

 

5.1 Kernel Optimization  

The CUDA visual profiler tool can be used for identifying the bottlenecks in a CUDA kernel. 

First step is to check using the visual profiler whether the kernel is bandwidth bound or 
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compute bound. For bandwidth bound kernels some optimizations to be considered are 

avoiding global memory coalescing, usage of shared memory as programmer designed cache 

whenever possible, considering using structure of arrays data structures. For compute bound 

kernels which are less likely, some strength reduction of the instructions can be done like 

replacing a multiplication operation by shift or addition operation or by replacing a division 

operation by reciprocal multiplication. Reduction in the overall number of operations might 

also help. Expensive re-computation can be reduced by pre-computing and storing values in 

temporary variables. Further, kernels must be made as coarse-grained as possible so that 

maximum amount of work can be done in limited kernel calls and the overhead of launching 

a kernel can be reduced. Limiting the shared memory and register usage within the kernel 

also can be tried thereby increasing the occupancy of the kernels. In (Lee et al., 2012) some 

efficient kernel optimization strategies are proposed for neuroimaging algorithms. They have 

optimized the compute bound kernels by reducing the use of registers and by increasing the 

data throughput by increasing workload of the threads. For memory bound kernels data is 

reorganized into self contained structures and a multi pass approach is adopted for efficient 

optimization. Kernel launch configuration can also be optimized by adjusting the number of 

blocks and the number of threads within each block in such a way that the device is utilized 

to the maximum. There must be enough independent threads to hide the instruction and 

memory latencies. Avoiding thread divergence is also an important technique used to 

optimize the kernel. 

 

5.2 Memory Optimization 

Two major factors to be considered while optimizing memory is memory access patterns and 

the number of concurrent memory requests. Unlike CPUs which are designed in such a way 

that slightly irregular memory access patterns do not affect the performance, in GPUs the 

same access patterns might affect the performance badly. By taking advantage of the GPU’s 

specialized address spaces like constant and texture memory which is based on spatial and 

temporal locality, this limitation can be addressed. For very frequently used data, using 

shared memory which is slightly limited in size can also be considered. Memory coalescing is 

another technique to be considered when global memory is used. However, it is advantages to 

minimize the usage of global memory and maximize the usage of shared memory without 

bank conflicts wherever possible. Another important point to be considered while optimizing 

memory is to reduce the overhead of memory transfers between the host and the device. 

Programmers must keep in mind to perform maximum computations in the device so that the 

frequent memory transfers between the CPU and the GPU can be reduced. Programmers 

should also keep in mind that the memory management operation in CUDA which are 

cudaMalloc and cudaFree are expensive operations compared to their C counter parts malloc 

and free. Therefore, to reduce the usage of these operations it is always advantageous to 

allocate memory once in the starting of the operation and keep on reusing the memory for 

every kernel calls. Streams, which are a sequence of operations that execute in the issuing 
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order, can be used to overlap the memory operations and the kernel launches for providing 

additional asynchronicity thereby improving performance. 

 

          
                       (a)                        (b)    

 

Figure 3.a. Left: linear addressing with stride of one 32 bit word (no bank conflict), Middle : linear 

addressing with stride of two 32 bit word (2 way bank conflict), Right: linear addressing with stride of 

three 32 bit word (no bank conflict), 3.b. Left: conflict free access via random permutations, Middle:  

conflict free access since threads 3,4,6,7 and 9 access the same word within bank 5, Right:  conflict free 

broadcast access (all threads access the same word) (Wen-Mei, 2011) 

 

 

 
 

Figure 4. CUDA streams (Wen-Mei, 2011) 
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In (Li et al., 2016) memory efficiency issue of deep Convolutional Neural Network (CNN) 

implementations in GPU is studied. The memory access patterns of the different memory 

bound CNN layers are analysed and are efficiently optimized to reduce the off chip memory 

access and the inter kernel communication. Authors in (Siegel et al., 2011) proposed a 

memory layout optimization method in their parallel version of the real world Gravit 

application. They split the large memory structures into smaller sub structures and aligned 

them consecutively in the global memory. A performance improvement of 50% was achieved 

compared to the unoptimized layout of the application. 

 

5.3 Optimizing Latency and Instruction Throughput 

Warp serialization or shared memory bank conflicts can be the main reason for an instruction 

throughput bounded kernel. The CUDA visual profiler can be used to determine these 

problems. Determining the difference between the instructions_executed counter and the 

instructions_issued counter gives an idea about the serialization happening in the kernel. 

Thread divergence can be determined by comparing the divergent_branch counter to the 

branch counter and if there is a divergence the source code can be modified to eliminate the 

divergence (Brodtkorb et al., 2013). Shared memory bank conflicts can be eliminated by the 

padding technique. Also source code can be modified in such a way to make all the memory 

accesses broadcasts or bank conflict free. To determine whether the kernel is bounded by 

arithmetic operation latencies or data dependencies we will have to compare the kernel 

performance with the hardware limits using the IPC-Instructions/cycle counter. A low value 

of this shows there are data dependencies and arithmetic latencies (Brodtkorb et at., 2013). 

Authors in Ref. (Tan et al., 2011) fine tune the double precision matrix multiplication 

algorithm using instruction scheduling derived entirely from instruction dependency. They 

could successfully reduce the memory latency and increase the instruction throughput to 

achieve a major performance improvement.  

 

6. Recent Trends in GPU Computing 

Major success of GPUs in general purpose computing owes to the fact that they are very 

inexpensive. The two major vendors of the GPUs NVIDIA and AMD develops GPUs on a 

large scale for the entertainment industry and with the advent of using GPUs for general 

purpose computing they have added additional functionality to the GPUs to cater to this new 

trend. Thus GPUs are now available in almost everything from cell phones to 

supercomputers. GPU based parallelization is now being applied in almost all fields of 

scientific computing ranging from image and video processing, remote sensing, machine 

learning, operations research, data mining etc. We review some recent research works related 

to GPU computing spanning varied areas of research. A Google scholar search on GPU 

computing resulted in a lot of papers dedicated to GPU computing in different areas of 

scientific research. Large amount of work from remote sensing, medicine, molecular biology, 

and artificial intelligence fields are being done on GPUs recently. In (Ma et al., 2016) a 

reusable GPU based parallel processing image model was proposed for remote sensing 

applications. In (Ke, et al., 2016) a parallel computing framework for cloud filtering and 
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smoothing for remote sensing images was proposed. Further, a Kepler compute architecture 

based GPU was used for detecting oil spill detection from multi-temporal LANDSAT-7 

imagery (Bhangale et al., 2017). Most of these algorithms have attained significant speedup 

compared to their CPU counterpart. GPU programming is widely being used in medicine and 

molecular biology fields. Single-particle cryo-EM structure determination is a new trend 

which is transforming structural biology. GPUs are being used to attain significant speedup in 

the image classification and high resolution refinement steps involved in the cryo-EM 

structure determination workflow (Kimanius et al., 2016). Multiple sequence alignment is a 

highly intensive computational problem in computational molecular biology where a similar 

DNA sequences are aligned and a molecular function prediction is done. In (Chen et al., 

2017) a CPU/GPU heterogeneous platform is used to build such an alignment system. In 

(Sundfeld et al., 2017) the very first GPU based solution for RNA structural alignment 

problem based on Sankoff algorithm is proposed. In (Dubey et al., 2016) GPUs are being 

used for ab initio protein structure prediction problem, which is a computational protein 

structure prediction from its primary amino acid sequence. It is a computationally very 

expensive algorithm and the authors have gained significant gain in computational time when 

done on GPUs. Research works related to other fields are also currently done on GPUs to 

speed up the intense computations. One such work in the area of Physics is Feynman Integral 

Evaluation by a Sector Decomposition Approach (FIESTA) (Smirnov, 2016) a new algorithm 

for better optical performance in integral evaluation. It aims at a calculation with increased 

number of sampling points to reduce the uncertainty estimates. In (Mantas et al., 2016) a 

GPU based implementation of several simple numerical examples of partial differential 

equations is studied to give an idea of how efficiently such computationally intensive 

mathematical problems can be done on a GPU platform. (Jung and Bae, 2018) proposes the 

GPU implementation of a new direct linear equation solver that can be applied to mechanical 

system analysis. (Domínguez et al., 2016) proposes the GPU implementation of the 

computationally expensive Smoothed Particle Hydrodynamics (SPH), a numerical method 

suitable for describing a variety of complex free-surface flows with large discontinuities. A 

parallel implementation of the most widely used machine learning algorithms Elastic Net and 

Lasso algorithms is presented in (Zhou et al., 2015). (Wu et al., 2017) proposes a model 

named VLogGP to study the behaviour of parallel applications specifically, the 

communication and memory access patterns for CPU/GPU heterogeneous systems. In 

(Doulgerakis et al., 2017) a GPU implementation of the highly computational parameter 

recovery in diffuse optical tomography is presented. The method is said to be highly 

applicable for both continuous wave and frequency domain systems and has achieved almost 

10 times speed increase when done on GPUs. Currently, NVIDIA GPUs are also on the 

forefront in accelerating many deep neural networks and artificial intelligence applications by 

a factor of 10 to 20x compared to the CPU, reducing the training time from weeks to days. 

 

Next we review the GPU architectures developed by NVIDIA after the Fermi architecture 

and the new functionalities added to each of them to enhance the efficiency of the general 
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purpose GPU computing. The immediate successor of Fermi, the Kepler architecture 

(NVIDIA Kepler GK110, 2013) has undergone a major change in the streaming 

multiprocessor organization (now called SMX) with just four multiprocessors and each with 

192 CUDA cores (1536 CUDA cores on one chip). Also the clock frequency was decreased 

from 1.5GHz to 1 GHz. This was all aimed at achieving increasing performance through 

more cores running at a decreased clock frequency. Compared to Fermi the bandwidth of the 

L2 cache was also increased to 512KB to cater to applications that uses a large amount of L2 

cache. Each SMX in Kepler features four warp schedulers and eight instruction dispatch 

units, allowing four warps of 32 parallel threads to be issued and executed concurrently. The 

number of registers per thread was quadrupled to 255. Memory configuration is similar to 

Fermi with an additional split for 64KB shared memory to 32KB each between shared 

memory and L1 cache. A new feature called dynamic parallelism that allows the GPU to 

generate new work for itself without the involvement of CPU was also introduced in Kepler. 

Maxwell architecture (NVIDIA Maxwell GM204 Architecture, 2016) the successor of Kepler 

provided a big leap in power efficiency and performance compared to the previous 

generations. It also delivers 2x the performance per watt compared to the Kepler products. 

Maxwell architecture consists of 16SMs (now called SMMs) with 128 CUDA cores (2048 

CUDA cores on one chip) and 128 texture units. Memory bandwidth was increased from 

Kepler’s 192GB/sec to 224GB/sec and L2 cache size was increased to 2048KB. Each 

Maxwell SMM contains four warp schedulers capable of dispatching two instructions per 

clock cycle. Compared to Kepler the memory hierarchy has also changed by implementing 

96Kb dedicated shared memory, while the L1 cache is combined with the texture cache 

function. Each Maxwell CUDA core with a larger dedicated shared memory and a larger 

cache is able to deliver roughly 1.4x more performance per core compared to Kepler. In 

addition to the power and computational performance improvement, Maxwell also provides 

some other features like NVIDIA Voxel Global Illumination (VXGI), Multi Frame sampled 

Anti- Aliasing (MFAA), dynamic super resolution, conservative rasterization, viewport 

multicast and sparse texture. Tesla P100 (NVIDIA Tesla P100 whitepaper, 2016) the 

successor to Maxwell with the Pascal architecture is featured as the world’s fastest GPU with 

15.3 billion transistors. The most important feature of this GPU is the new high speed 

interface NVLink that provides GPU to GPU data transfer at up to 160GB/sec. It provides 

single, seamless unified virtual address space for CPU and GPU memory which greatly 

simplifies the GPU programming. Compute preemption is an important feature in Pascal 

architecture which allows the tasks to be preempted at instruction level granularity rather than 

the thread block granularity as in early architectures. GP100 SM ISA also provides new 

arithmetic operations which can perform FP16 operations very fast on a single processor 

CUDA core and also allows storage of two FP16 values in 32-bit GP100 registers. This 

allows fast and efficient training and deployment of large deep learning neural networks. 

GP100 also provides improved atomic operations. A comparison between the three NVIDIA 

GPU architectures is shown in Table 2. NVIDIA’s next generation GPU is to be launched 

soon in early 2018. 
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Table 2. Comparison between three Tesla GPU architectures (NVIDIA Parallel Forall, 2014) 

GPU Kepler 

GK110 

Maxwell 

GM200 

Pascal 

GP100 

Compute capability 3.5 5.2 6.0 

Threads per warp 32 32 32 

Max warp per multiprocessor 64 64 64 

Max threads per multiprocessor 2048 2048 2048 

Max thread blocks/multiprocessor 16 32 32 

Max 32 bit registers per SM 65536 65536 65536 

Max registers per block 65536 32768 65536 

Max registers per thread 255 255 255 

Max thread block size 1024 1024 1024 

CUDA cores per SM 192 128 64 

Number of SMs 8 16 60 

Total CUDA cores 1536 2048 3840 

Shared memory size/SM configurations 16K/32K/48K 96K (dedicated) 64KB(dedicated) 

L1 cache/SM 64KB 64KB (split) 24KB(dedicated) 

L2 cache 512KB 2048KB 4096KB 

 

 

 

7. Conclusion 

In this paper we have given a detailed review of the state of the art Fermi GPU architecture 

focusing on the programming model and the debugging tools. Key to performance 

improvement in CUDA applications is to reduce the global memory latency by providing 

massive multithreading so that the cores have enough amount of work to perform. Though 

porting any algorithms to the GPU is fairly easy fine tuning the programs to exploit the 

maximum capacity of the GPU is a major challenge. The GPU code has to be largely 

optimized to attain the maximum efficiency of the GPU being used. In this paper we have 

reviewed with examples some common programming strategies adopted by the GPU 

programmers to take maximum advantage of the GPU programming. We have also reviewed 

some common optimization techniques like kernel optimization, memory optimization, 

register optimization adopted by the GPU programmers to fine tune the GPU applications. 

Further, in this paper we have also given a brief review of some trends related to GPU 

computing. A brief review of the NVIDIA GPUs launched after the Fermi architecture and 

the new additional features included in each GPU is also discussed. 

 

Our future work includes parallelization of some powerful image retrieval algorithms using 

the latest CUDA architecture and fine tune the application using the different programming 

and optimization strategies discussed. However, achieving peak achievable performance for a 

particular architecture rather than getting stuck in the local maximum of performance is a big 

challenge. 
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