Point Measurement Techniques and Radar Remote Sensing Technique Using for Soil Moisture Estimation: A Literature Review

  • Vivek Chamoli Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
  • Rishi Prakash Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
  • Anurag Vidyarthi Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
Keywords: Dielectric techniques, frequency domain reflectometry, neutron scattering, soil moisture, thermo gravimetric, time domain reflectometry, synthetic-aperture radar (SAR).

Abstract

In spite of the fact that previous researchers have utilized different systems of moisture content assurance of soils. In this specific situation, analysts have built up a few systems for estimating the soil moisture eg., thermo gravimetric, neutron dissipating, soil resistivity, dielectric methods and Radar Remote Sensing method using SAR (Synthetic-aperture radar) images. Be that as it may, these methods are very mind boggling, costly (because of very intricate hardware and gear) and henceforth past the span of many. This audit accentuates that why it winds up basic to assess different techniques utilized by the analysts for assurance of the soil moisture. Likewise, a necessity for finding new soil moisture estimation methods or altering the current strategies has been surveyed.

Downloads

Download data is not yet available.

Author Biographies

Vivek Chamoli, Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Vivek Chamoli pursuing his PhD in Electronics and Communication from Graphic Era Deemed to be University, Dehradun, India He is currently a Research Fellow working with the Indian Space Research Organization, Ahmedabad, India. His research focuses on Remote Sensing, NavIC application, Image Processing, Video Processing, and Signal Processing.

Rishi Prakash, Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Rishi Prakash did his PhD from Dept. of ECE, IIT Roorkee. Currently he is serving as Associate Professor in Dept of ECE, GEU, Dehradun, India. His research interest are soil parameter retrieval with microwave remote sensing. He has published many research paper in this field. Currently he is working on non-navigational applications of GNSS. He is closely working with Indian Space Research Organization for developing soil moisture retrieval model with NavIC constellation under different field conditions.

Anurag Vidyarthi, Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Anurag Vidyarthi obtained B.Sc. degree from MJPR University, Bareilly, India, in 2005 and M.Sc. degree from BU Bhopal, India, in 2007. He receives M.Tech. and Ph.D. degree from Graphic Era University, India, in 2010 and 2014 respectively. Presently he is associated with Department of Electronics and Communication Engineering, Graphic Era University, Dehradun, India. His areas of interest are rain attenuation, fade mitigation techniques, ionospheric effects on the navigation system, and applications of Navigational satellite data.

References

Engman ET. Applications of Microwave Remote Sensing of Soil Moisture for Water Resources and Agriculture. Remote Sens Environ. 1991; 35(2–3): 213–226p.

Srivastava HS, Patel P, Navalgund RR. How Far SAR has Fulfilled Its Expectation for Soil Moisture Retrieval. Asia-Pacific Remote Sensing Symposium. 2006; 641001–641001-12

SU, S. L., Singh, D. N., and Baghini, M. S. (2014). A critical review of soil moisture measurement. Measurement, 54, 92–105.

Chamoli, V., Prakash, R., Vidyarthi, A., and Ray, A. (2017, November). Sensitivity of NavIC signal for soil moisture variation. In 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT) (pp. 1–4). IEEE.

Pandey, J., Prakash, R., Ray, A., Chamoli, V., and Vidyarthi, A. (2019, March). Study of GPS C/No ratio for retrieval of Surface Soil Moisture. In 2019 International Conference on Signal Processing and Communication (ICSC) (pp. 213–216). IEEE.

Pandey, J., Chamoli, V., and Prakash, R. (2020). A Review: Soil Moisture Estimation Using Different Techniques. In Intelligent Communication, Control and Devices (pp. 105–111). Springer, Singapore.

Chamoli, V., Prakash, R., Vidyarthi, A., and Ray, A. (2020, July). Analysis of NavIC Multipath Signal Sensitivity for Soil Moisture in Presence of Vegetation. In International Conference on Innovative Computing and Communications (pp. 353–364). Springer, Singapore.

D.A. Robinson, C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones, R. Knight, (2008). Soil moisture measurement for ecological and hydrological moistureshed-scale observatories: a review, VadoseZone J. 7(1), 358–389.

Prakash, R., Singh, D. and Pathak, N.P., “Microwave specular scattering response of soil texture at X-band”, ADV SPACE RES, Vol. 44(7), 801–814, 2009.

Wan, W., Li, H., Chen, X., Luo, P. and Wan, J., “Preliminary calibration of GPS signals and its effects on soil moisture estimation”, Acta Meteor. Sinica, Vol. 27(2), 221–232, 2013.

Phillips, A.J., Newlands, N.K., Liang, S.H., Ellert, B.H., “Integrated sensing of soil moisture at the field-scale: measuring, modeling and sharing for improved agricultural decision support”, COMPUT ELECTRON AGR, Vol. 107, 73–88, 2014.

Liang, W.L., Hung, F.X., Chan, M.C. and Lu, T.H., “Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate”, J HYDROL, Vol. 516, 210–221, 2014.

Tabibi, S., Nievinski, F.G., van Dam, T. and Monico, J.F., “Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications”. ADV SPACE RES, Vol. 55(4), 1104–1116, 2015.

Zhang, D., Li, Z.L., Tang, R., Tang, B.H., Wu, H., Lu, J. and Shao, K., “Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions”, INT J REMOTE SENS, Vol. 36(19–20), 5015–5030, 2015.

El Hajj, M., Baghdadi, N., Zribi, M., Belaud, G., Cheviron, B., Courault, D. and Charron, F., “Soil moisture retrieval over irrigated grassland using X-band SAR data”, REMOTE SENS ENVIRON, Vol. 176, 202–218, 2016.

Liao, W., Wang, D., Wang, G., Xia, Y. and Liu, X., “Quality Control and Evaluation of the Observed Daily Data in the North American Soil Moisture Database”, J. Meteor. Res, Vol. 33(3), 501–518, 2019.

Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441.

Wei, L.; Zhang, B.; Wang, M. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agric. Water Manag. 2007, 94, 54–62.

Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci. 2018, 1436, 19–35.

Painter, D. J.,( 1976) Moisture Near The Soil Surface. Proceedings of Soil and Plant Water Symposium: Palmerston North, 7–12.

Proulx, S. (August-2001). Evaluation of The Performance Of Soll Moisture Sensors In Laboratory-Scale Lysimeters. Department of Biosystems Engineering University of Manitoba Winnipeg, Manitoba, 1–124.

Wobschall, D. (1977). A theory of the complex dielectric permittivity of soil containing Water” IEEE Transactions on Geoscience Electronics. GE-15(1): 49–58.

Stacheder, M., Koeniger, F., and Schuhmann, R. (2009). New dielectric sensors and sensing techniques for soil and snow moisture measurements. Sensors, 9(4), 2951–2967.

Heiniger, R. (2013). Sensors and monitors for measuring soil moisture. Corn Kernels, (1).

Johri, A., Prakash, R., Vidyarthi, A., Chamoli, V., and Bhardwaj, S. IoT-Based System to Measure Soil Moisture Using Soil Moisture Sensor, GPS Data Logging and Cloud Storage. In International Conference on Innovative Computing and Communications (pp. 679–688). Springer, Singapore.

ASTM D 2216 (2008), Standard Test Methods for Laboratory Determination of Moisture (Moisture) Content of Soil, ASTM International, West Conshohocken, PA.

Johnson AI. Methods of Measuring Soil Moisture in the Field. Geological Survey Water-Supply Paper 1619-U; 1962.

Reynolds SG. The Gravimetric Method of Soil Moisture Determination. J Hydrol. 1970; 11(3): 258–273p.

Patel P, Srivastava HS. Radarsat-2 Announcement of Opportunity Project on Soil Moisture, Surface Roughness and Vegetation Parameter Retrieval using SAR Polarimetry. SAC/EPSA/MPSG/CVD/TDP R&D/01/13, SOAR International Closing and Reporting-2013, Final Report Submitted to Canadian Space agency (CSA) through MDA, Canada, Indian Space Research Organization (ISRO), India. Jan 2013; 01–81p.

Shukla A, Panchal H, Mishra M, et al. Soil moisture Estimation using Gravimetric Technique and FDR Probe Technique: A Comparative Analysis. American International Journal of Research in Formal, Applied & Natural Sciences (AIJRFANS). 2014; 8(1): 89–92p.

Bhagat VS. Space-born Microwave Remote Sensing of Soil Moisture: A Review. Recent Progress in Space Technology. 2014; 24(4): 119–150p.

Engman ET, Chauhan N. Status of Microwave Soil Moisture Measurements with Remote Sensing. Remote Sens Environ. 1925; 51(5): 189–198p.

Ulaby FT, Dubois PC, Zyl JV. Radar Mapping of Surface Soil Moisture. J Hydrol. 1996; 184(1–2): 57–84p.

Srivastava HS, Patel P, Sharma Y, et al. Large-Area Soil Moisture Estimation Using Multi-Incident-Angle Radarsat-1 SAR Data. IEEE Trans Geosci Remote Sens. 2009; 47(8): 2528–2535p.

Blonquist Jr, J. M., Jones, S. B., and Robinson, D. A. (2005). A time domain transmission sensor with TDR performance characteristics. Journal of hydrology, 314(1–4), 235–245.

B. H. Rao, D. N. Singh, (2011). Moisture content determination by TDR and capacitance techniques: a comparitive study, Int. J. Earth Sci. Eng. 4(6), 132–137.

K. Noborio, (2001). Measurement of soil moisture content and electrical conductivity by time domain reflectometry: a review, Comput. Electron. Agric. 31(3), 213–237.

Trebbels, D., Kern, A., Fellhauer, F., Huebner, C., and Zengerle, R. (2013). Miniaturized FPGA-based high-resolution time-domain reflectometer. IEEE Transactions on Instrumentation and Measurement, 62(7), 2101–2113.

Tran, A. P., Bogaert, P., Wiaux, F., Vanclooster, M., and Lambot, S. (2015). High-resolution space–time quantification of soil moisture along a hillslope using joint analysis of ground penetrating radar and frequency domain reflectometry data. Journal of Hydrology, 523, 252–261.

Gaskin, G.D. and J.D. Miller, (1996). Measurement of soil water content using simplified impedance measuring technique. Journal of Agricultural Engineering Research 63: 153–160.

L. Ward, R. S. Wittman, U.S. Department of Energy under Contract DE-AC05-76RL01830, August 2009. PNNL-18539 Available at http://www.pnl.gov/main/publications/external/technical_reports/PNNL-18539.pdf [Accessed on 5 Nov- 2014 ],

Li, J., Smith, D. W., and Fityus, S. G. (2003). The effect of a gap between the access tube and the soil during neutron probe measurements. Soil Research, 41(1), 151–164.

Amoozegar, K.C. Martin, M.T. Hoover, (1989). Effect of access hole properties on soil water content determination by neutron thermalisation, Soil Sci. Soc. Am. J. 53, 330–335.

Fityus, S., Wells, T., and Huang, W. (2011). Water content measurement in expansive soils using the neutron probe. Geotechnical Testing Journal, 34(3), 255–264.

Schmugge, T. J., Jackson, T. J., and McKim, H. L. (1980). Survey of methods for soil moisture determination. Water Resources Research, 16(6), 961–979.

Elder, A.N. and Rasmussen, T.C., “Neutron probe calibration in unsaturated tuff”, SOIL SCI SOC AM J, Vol. 58(5), 1301–1307, 1994.

Li, J., Smith, D.W. and Fityus, S.G., “The effect of a gap between the access tube and the soil during neutron probe measurements”, SOIL RES, Vol. 41(1), 151–164, 2003.

Sreedeep, S., Reshma, A.C. and Singh, D.N., “Measuring soil electrical resistivity using a resistivity box and a resistivity probe”, GEOTECH TEST J, Vol. 27(4), 411–415, 2004

Kumari, A., Patel, N., and Mishra, A. K. (2017). Field evaluation and calibration of Tensiometer and Gypsum block sensors in drip irrigated Broccoli (Brassica oleracea var. italica). Journal of Soil and Water Conservation, 16(3), 267–273.

Sreedeep, S., Reshma, A. C., and Singh, D. N. (2004). Measuring soil electrical resistivity using a resistivity box and a resistivity probe. Geotechnical testing journal, 27(4), 411–415.

Zazueta, F. S., and Xin, J. Soil Moisture Sensors, Florida Cooperative Extension Service. Bulletin, 292.

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., … and Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358–389.

Terhoeven-Urselmans, T., Schmidt, H., Joergensen, R. G., and Ludwig, B. (2008). Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties: Importance of sample pre-treatment. Soil Biology and Biochemistry, 40(5), 1178–1188.

Taffesse A.S., Dorosh P., Gemessa S.A. Food and Agriculture in Ethiopia. University of Pennsylvania Press; Philadelphia, PA, USA. 3 Crop Production in Ethiopia: Regional Patterns and Trends, 2014.

Conway D. The Climate and Hydrology of the Upper Blue Nile River. Geogr. J.;166:49–62. 2000. doi: 10.1111/j.1475-4959.2000.tb00006.x.

Engida A.N., Esteves M. Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia. J. Hydrol.; 399:226–234, 2011. doi: 10.1016/j.jhydrol.2011.01.001.

Gillies R.R., Carlson T.N. Thermal Remote Sensing of Surface Soil Water Content with Partial Vegetation Cover for Incorporation into Climate Models. J. Appl. Meteorol., 34:745–756, 1995. doi: 10.1175/1520-0450(1995)034<0745:TRSOSS>2.0.CO;2.

Sandholt I., Rasmussen K., Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote. Sens. Environ., 79:213–224, 2002. doi: 10.1016/S0034-4257(01)00274-7.

Petropoulos G.P., Ireland G., Petropoulos G.P., Ireland G., Barrett B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A/B/C.;83–84:36–56, 2015.

Ulaby F.T., Bradley G.A., Dobson M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II-Vegetation-Covered Soil. IEEE Trans. Geosci. Electron.;17:33–40, 1979. doi: 10.1109/TGE.1979.294626.

Zribi M., Baghdadi N., Holah N., Fafin O. New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion. Remote. Sens. Environ.; 96:485–496, 2005. doi: 10.1016/j.rse.2005.04.005.

Amazirh A., Merlin O., Er-Raki S., Gao Q., Vincent R., Malbeteau Y., Khabba S., Escorihuela M.J. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote. Sens. Environ.;211:321–337, 2018. doi: 10.1016/j.rse.2018.04.013.

Bai X., He B., Li X., Zeng J., Wang X., Wang Z., Zeng Y., Su Z. First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau. Remote. Sens.; 9:714, 2017. doi: 10.3390/rs9070714.

Torres R., Snoeij P., Geudtner D., Bibby D., Davidson M., Attema E., Potin P., Rommen B., Floury N., Brown M., et al. GMES Sentinel-1 mission. Remote. Sens. Environ.; 120:9–24, 2012. doi: 10.1016/j.rse.2011.05.028.

Ulaby F.T., Batlivala P.P., Dobson M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil. IEEE Trans. Geosci. Electron.; 16:286–295, 1978. doi: 10.1109/TGE.1978.294586.

Dobson M.C., Ulaby F. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, And Soil Texture: Part III-Soil Tension. IEEE Trans. Geosci. Remote. Sens.; 19:51–61, 1981. doi: 10.1109/TGRS.1981.350328.

Karthikeyan L., Pan M., Wanders N., Kumar D.N., Wood E.F. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour.; 109:106–120, 2017. doi: 10.1016/j.advwatres.2017.09.006.

Oh Y., Sarabandi K., Ulaby F. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote. Sens.; 30:370–381, 1992. doi: 10.1109/36.134086. [CrossRef] [Google Scholar]

Oh Y., Sarabandi K., Ulaby F. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote. Sens. 2002; 40:1348–1355. doi: 10.1109/TGRS.2002.800232.

Oh Y. Quantitative Retrieval of Soil Moisture Content and Surface Roughness From Multi-polarized Radar Observations of Bare Soil Surfaces. IEEE Trans. Geosci. Remote. Sens. 2004; 42:596–601. doi: 10.1109/TGRS.2003.821065.

Dubois P., Van Zyl J., Engman T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote. Sens. 1995; 33:915–926. doi: 10.1109/36.406677.

Fung A., Li Z., Chen K. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote. Sens. 1992; 30:356–369. doi: 10.1109/36.134085.

Choker M., Baghdadi N., Zribi M., El Hajj M., Paloscia S., Verhoest N., Lievens H., Mattia F. Evaluation of the Oh, Dubois and IEM models using large dataset of SAR signal and experimental soil measurements. Water. 2017; 9:38. doi: 10.3390/w9010038.

Baghdadi N., Choker M., Zribi M., El Hajj M., Paloscia S., Verhoest N.E.C., Lievens H., Baup F., Mattia F. A New Empirical Model for Radar Scattering from Bare Soil Surfaces. Remote. Sens. 2016; 8:920. doi: 10.3390/rs8110920.

H.S. Srivastava,P. Patel, R.R. Navalgund, “Incorporating soil texture in soil moisture estimation from extended low-1 beam mode RADARSAT-1 SAR data”, International Journal of Remote Sensing, vol. 27(12), pp. 2587–2598, 2006.

R. Prakash, D. Singh, N.P. Pathak, “A fusion approach to retrieve soil moisture with SAR and optical data”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5(1), pp. 196–206, 2012.

M. Hajj, N. Baghdadi, G. Belaud, M. Zribi, B. Cheviron, D. Courault, D. Charron, “Soil moisture retrieval over grassland using X-band SAR data”, IEEE Geoscience and Remote Sensing Symposium, vol. 1, pp. 3638–3641, 2014.

R. Guida, V. Fotias, “Soil moisture retrieval with S-band SAR data”, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 1, pp. 1304–1307, 2015.

P.S. Narvekar, D. Entekhabi, S.B. Kim, E.G. Njoku, “Soil moisture retrieval using L-band radar observations”, IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3492–3506, 2015.

Q. Meng, L. Zhang, Q. Xie, S. Yao, X. Chen, Y. Zhang, Y, “Combined Use of GF-3 and Landsat-8 Satellite Data for Soil Moisture Retrieval over Agricultural Areas Using Artificial Neural Network”, Advances in Meteorology, vol. 2018, pp. 1–12, 2018.

S. Bousbih, M. Zribi, El Hajj, BaghdadiLili-Chabaane, Q. Gao, P. Fanise, “Soil moisture and irrigation mapping in A semi-arid region, based on the synergetic use of Sentinel-1 and Sentinel-2 data”, Remote Sensing, vol. 10(12), pp. 1–22, 2018.

L. Zhu, J.P. Walker, N. Ye, C. Rüdiger, “Roughness and vegetation change detection: A pre-processing for soil moisture retrieval from multi-temporal SAR imagery”, Remote sensing of environment, vol. 225, pp. 93–106, 2019.

L. Tao, G. Wang, W. Chen, X. Chen, J. Li, Q. Cai, “Soil Moisture Retrieval from SAR and Optical Data Using a Combined Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12(2), pp. 637–647, 2019.

Ayehu, G., Tadesse, T., Gessesse, B., Yigrem, Y., and M Melesse, A., “Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia.” Sensors (Basel, Switzerland) vol. 20,11 3282. 9 Jun. 2020.

Published
2021-07-04
Section
Articles