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Abstract

Expanding knowledge about the crucial roles of microRNAs (miRNAs) in human diseases has led to the idea that
miRNAs may be novel, promising therapeutic targets against various pathological conditions. The recent success of
a human clinical trial using anti-miR-122 oligonucleotides against chronic hepatitis C virus has paved the way for
this approach. In this review, we summarize briefly the current status of clinical trials of miRNA-targeting therapy
and several representative preclinical trials against hepato-gastrointestinal carcinoma. In addition, we describe the
currently available technologies for modification and delivery of oligonucleotides, which are essential in providing
efficient, specific and safe approaches to targeting miRNAs.
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Introduction
The expression and functional importance of non-coding
RNAs (ncRNAs), such as long ncRNAs and microRNAs,
in various human diseases has been reported extensively
[1-3]. Accordingly, clinical applications of ncRNAs are
highly anticipated [4].
MicroRNAs (miRNAs) are small non-coding RNAs first

discovered in C. elegans [5]. They are now known to be
expressed in most organisms from plants to vertebrates
[6]. Many miRNAs are functionally important, acting as
oncogenes, tumor suppressors and crucial modulators in
intracellular pathways [7].
miRNAs are generated from endogenous transcripts

through maturation processing. Long primary miRNAs
(pri-miRNAs) ranging in size from several hundred nu-
cleotides (nt) to several kilobases are transcribed from
the genome [8]. These are processed into stem-loop pre-
cursor miRNAs (pre-miRNAs) of ~70 nt by a ribonucle-
ase III (RNase III) known as Drosha and DGCR8/Pasha
in the nucleus [8-11]. After these processing steps, pre-
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miRNAs are transported to the cytoplasm via exportin-5
[12], where they are recognized by an RNA-induced silen-
cing complex (RISC). This complex is composed of the
RNase III Dicer, a double-strand RNA binding protein
TRBP, and Argonaute2 (Ago2). Pre-miRNAs are cleaved
into mature miRNAs of ~22 nt by Dicer [13]. The two
RNA strands are separated, and the guide strand for the
target mRNA remains associated with Ago2. RISC recog-
nizes the target mRNA based on the complementarity
between the guide miRNA and the mRNA transcript [14]
within the 3′ untranslated region (UTR) [15]; the target
mRNA is subsequently degraded or translationally inhib-
ited [14,16], resulting in post-transcriptional gene silencing
[14]. While the molecular mechanisms for gene silencing
by miRNA-mRNA targeting require further elucidation,
some reports have suggested that miRNAs may sequester
target mRNAs into P-bodies [17], where mRNA decay
occurs through the initiation of rapid deadenylation [18]
or translational repression occurs by inhibiting the binding
of ribosomes to the 5′ caps of miRNAs [19].
Alterations in miRNA expression levels contribute to

the pathogenesis of human malignancies. The changes re-
sult from various mechanisms, including deletions, ampli-
fications or mutations at miRNA loci, epigenetic silencing,
dysregulation of transcription factors that are related to
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the transcription of specific miRNAs, environmental
factors such as cigarette smoke and infection, and gene
polymorphisms [20-22]. Describing specific patterns of
miRNA expression levels may be useful for diagnosis,
prognosis or evaluating therapeutic response, or in
miRNA-targeted therapies that repress or facilitate
expression of specific miRNAs.
Many excellent reviews have discussed the aberrant

expression and potential biological roles of miRNAs in
gastroenterological diseases [23-28]. Here, we focus on the
recent progress of clinical trials of miRNA-target therapies
and representative preclinical trials against gastroentero-
logical carcinoma; additionally, we outline the future work
required for clinical utilization of miRNAs.

Review
Current clinical applications of miRNA-targeting
therapeutics
Anti-miR-122 therapy against chronic hepatitis C
Experiments in vitro and in vivo have led to the devel-
opment of potential new therapies targeting miRNAs.
While targeting miRNAs in human clinical trials has
focused largely on miRNA signatures as biomarkers for the
diagnosis, prognosis, or therapeutic response to traditional
treatment [22], two human clinical trials have assessed
directed miRNA-targeting as therapeutics, according to
ClinicalTrials.gov (http://clinicaltrials.gov) (Table 1). Both
trials are related to gastroenterological diseases.
One of the most extensively studied miRNAs is miR-122,

an abundant liver-specific miRNA that plays a critical role
in liver function, such as fatty acid and cholesterol metab-
olism, and in the pathophysiology of liver diseases, such as
hepatitis C viral (HCV) replication [11,31-33]. Inhibition of
miR-122 with locked-nucleic-acid (LNA)-based anti-miR-122
oligonucleotides complementary to miR-122, caused a
long-lasting decrease in total plasma cholesterol in mice
[31] and in monkeys [34]. Lanford et al. demonstrated that
LNA-based anti-miR-122 oligonucleotides led to the long-
lasting suppression of HCV viremia and improvement of
HCV-induced liver pathology in chimpanzees [33]. In
these three cases, no LNA-associated toxicity or histo-
pathological changes were found in mice and non-
human primates after short-term administration of the
oligonucleotides [31,33,34]. These reports indicate that
LNA-based anti-miRs can achieve efficient silencing of
endogenous miRNA function in mammals and primates,
which supports the application of anti-miRNA therapy to
other human diseases.
These preclinical results led to the development of mira-

virsen, a LNA-modified DNA phosphorothioate antisense
oligonucleotide against miR-122, as the first miRNA-
targeting drug for clinical use [29]. It was developed to
target HCV since the stability and propagation of HCV is
dependent on a functional interaction between the HCV
genome and miR-122 [35]. miR-122 binds to two closely
spaced target sites in the highly conserved 5′-untranslated
region of the HCV genome, thereby forming an oligomeric
miR-122-HCV complex that protects the HCV genome
from nucleolytic degradation or from host innate immune
responses [35]. The miR-122 binding sites are conserved
across all HCV genotypes and subtypes [36]. Miravirsen, an
LNA-modified DNA phosphorothioate oligonucleotide
complementary to miR-122, is thought to hybridize to the
5′ region of mature miR-122, resulting in sequestration and
inhibition of miR-122 [29]. Recently, it was reported that
Miravirsen also binds to the stem-loop structure of pri- and
pre- miR-122 and inhibits both Dicer- and Drosha- medi-
ated processing of miR-122 precursors [30] (Figure 1).
No harmful events were observed in phase I studies of

miravirsen in healthy volunteers; therefore, phase II stud-
ies were initiated to evaluate the safety and efficacy of mir-
avirsen in 36 patients with chronic HCV genotype 1
infection. The patients were randomly assigned to receive
5-week subcutaneous injections of placebo or doses of
miravirsen at 3, 5 or 7 mg per kilogram of body weight
over a 29-day period. Patients who received miravirsen
showed a dose-dependent reduction in HCV levels, with-
out major adverse events and with no escape mutations in
the miR-122 binding sites of the HCV genome [29].
The success of miravirsen is promising, not only as a

novel anti-HCV drug, but also as the first trial of miRNA-
targeting therapy. However, caution should be used since
miR-122 is generally known as a tumor-suppressive
miRNA. Downregulation of miR-122 expression in he-
patocellular carcinoma (HCC) is associated with a poor
prognosis [37-39], and liver tumorigenesis is facilitated in
mice lacking miR-122 [40,41]. Nonetheless, as an anti-
HCV drug, short-term administration of miravirsen
with a 4-week regimen was reversible, and the effects of
a 12-week regimen were tested from November 2012–
May 2013 (ClinicalTrials.gov Identifier: NCT01727934).
Although miravirsen also showed promise for decreasing
serum cholesterol levels, we cannot conclude that miravir-
sen remains free of adverse effects for long-term adminis-
tration until a long-term trial is completed.

miR-34 mimics as a therapeutic against primary and
metastatic liver cancer
In addition to miravirsen, a clinical trial of MRX34 as
a mimic of miR-34 is ongoing. MRX34 is a liposome-
formulated mimic of the tumor suppressor miR-34 (Mirna
Therapeutics, Austin, TX). The expression levels of miR-
34 are decreased in most human cancers [42-44], includ-
ing several epithelial cancers, melanomas, neuroblastomas,
leukemias and sarcoma [45]. miR-34 is involved in regulat-
ing the p53 pathway and inhibits cancer cell growth by
directly targeting oncogenes such as Myc, c-Met, Bcl-2,
CDK4, CDK6, Cyclin D1, and Cyclin E2 [42,43,46]. Liu

http://clinicaltrials.gov


Table 1 Current clinical applications targeting miRNAs in human

miRNA NIH identifier Drug Subjects Outline/purposes Reference

miR-122 NCT01646489 Miravirsen Telaprevir Hapatitis C chronic hepatitis C To assess the safety, tolerability, and affect on blood levels of miravirsen
and telaprevir when co-administered miravirsen and telaprevir in healthy
subjects. <Phase 1>

NCT01872936 Miravirsen Telaprevir Ribavirin Chronic hepatitis C (genotype1)
Null responders to treatment
with peg IFNα/RBV therapy.

To assess the safety, tolerability, antiviral activity, genotype resistance
associated with virological failure, pharmacokinetics and pharmacodynamics
of two dose regimens of miravirsen in combination with telaprevir and ribavirin
in subjects with hepatitis C virus genotype 1 infection. <Phase 2>

NCT01200420 Miravirsen Hepatitis C 1. Determining the safety and tolerability of multiple dosing of
miravirsen in subjects infected with chronic hepatitis C.

[29]

Saline
2. Assessing of pharmacokinetics of miravirsen and assessment
of miravirsen's effect on HCV viral titer. <Phase 2>

NCT01727934 Miravirsen Hepatitis C (genotype1) Null responders
to treatment with peg IFNα/RBV therapy.

To aseess the safety, antiviral activity, and pharmacokinetics of
9 subcutaneous injections of miravirsen monotherapy over a
total of 12 weeks of treatment.<Phase 2>

NCT00688012 SPC3649 Hepatitis C A placebo-controlled, double-blind, randomized, single dose, dose
escalating trial in healthy men to evaluate the safety, tolerability,
pharmacokinetics and pharmacodynamics of SPC3649. <Phase 1>

[30]

miR-34 NCT01829971 MRX-34 Primary HCC metastatic liver cancer Evaluating the safety of MRX34 in patients with primary
liver cancer or those with liver metastasis from other cancers.
<Phase 1>

SPC3649: the active component of miravirsen.
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Figure 1 Miravirsen inhibits miR-122. a, Mir-122 binds two target sites in the HCV 5′ non-coding region and promotes HCV propagation.
b, Miravirsen, a modified oligonucleotide complementary to miR-122 sequences, binds and sequesters mature miR-122, resulting in the functional
inhibition of miR-122. Miravirsen also binds to the stem-loop structure of pri- and pre-miR-122 and inhibits the maturation of miR-122.
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et al. evaluated the survival of mice with established pros-
tate tumors that received a miR-34 injection [43]. The
authors reported that miR-34a extended the survival of
tumor-bearing mice compared to mice that did not re-
ceive a miR-34 injection. Hu et al. demonstrated that
systemic administration of a miR-34a delivery system in a
pancreatic xenograft cancer model significantly inhibited
tumor growth and induced cancer cell apoptosis [47]. Fur-
ther study of MRX34 is being conducted by Mirna Thera-
peutics, which initiated a Phase I study in May 2013 to
examine the effects of MRX34 on unresectable primary
liver cancer or advanced or metastatic cancer with liver
involvement (ClinicalTrials.gov Identifier: NCT01829971).

Representative preclinical in vivo experiments
Since their discovery, many novel miRNAs have been
identified. As of September 2013, 2,578 mature human
miRNA sequences were deposited in miRBase, a public re-
pository hosted by the Sanger Institute (Cambridge, UK).
miRNAs have diverse biological functions as they can tar-
get mRNAs with weak complementarity. Thus, it is not
surprising that most miRNAs are associated with facilitat-
ing or suppressing tumors via modulating the expression
levels of various tumor-related genes. The PubMed data-
base contains nearly 25,000 miRNA-related articles, many
of which aimed to identify novel targets of miRNAs, novel
miRNAs, or novel functions of miRNAs in oncogenic/
tumor suppressive function or stabilization. The major-
ity of these in vitro studies need to be confirmed in mice
or in non-human primates before their use in clinical
trials. In the following section, we describe representa-
tive in vivo approaches to targeting miRNAs in hepato-
gastroenterological cancers, which have evaluated the
effects on the initiation, proliferation or growth of tu-
mors in transgenic mice or an in vivo xenograft cancer
model (Figure 2 and Table 2).

miR-221 as an oncogenic miRNA
miR-221 is one of the most frequently and consistently
upregulated miRNAs in human cancer, including in HCC,
pancreatic, colon, stomach, glioblastoma, kidney, bladder,
prostate and thyroid cancer, which indicates its import-
ance in tumorigenesis [48]. miR-221 has multiple gene
targets, such as the cyclin-dependent kinase inhibitors
p27Kip1 (CDKN1B/p27) [54,55] and CDKN1C/p57 [55],
the pro-apoptotic protein B-cell lymphoma 2-modifying
factor (Bmf) [56], the inhibitor of the phosphoinositide 3-
kinase pathway phosphatase and tensin homolog (PTEN)
[57], the tissue inhibitor of metalloproteinase 3 (TIMP3)
[57], the DNA damage- inducible transcript 4 (DDIT4),
and a tumor suppressor that modulates the kinase activity
of mammalian target of rapamycin (mTOR) [58].
Callegari et al. demonstrated that miR-221 could pro-

mote liver tumorigenicity in a transgenic mouse model of



Figure 2 Representative clinical and preclinical trials targeting miRNAs. Currently on-going clinical trials and representative preclinical
studies targeting miRNAs against cancers in the gastroenterological field.
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miR-221 overexpression in the liver. This model is charac-
terized by the appearance of spontaneous liver tumors in a
fraction of male mice and a strong acceleration of tumor
development in 100% of mice treated with diethylnitrosa-
mine (DEN). Ten-day old mice received one intraperito-
neal injection of DEN, followed 2 months later by a single
intravenous dose of anti-miR-221 oligonucleotide (AMO)
diluted in saline solution every 15 days, for a total of three
injections. Similar to human HCC, tumors in these mice
were characterized by an increase in miR-221 expression
and a concomitant inhibition of its target protein-coding
genes (CDKN1B/p27 and Bmf, not CDKN1C/p57). As ex-
pected, mice that received an in vivo intravenous injection
of anti-miR-221 oligonucleotides exhibited a significant
reduction in the number and size of liver tumor nodules.
This study not only shows that miR-221 can promote liver
tumorigenicity, but it also establishes a valuable animal
model for preclinical investigations of the use of anti-
miRNA approaches to liver cancer therapy [48].
Tumor-suppressive miRNAs
Many studies have used the nude mouse xenograft model
to evaluate the effects of a specific miRNA on tumorigen-
esis, tumor growth or metastasis in vivo. In particular, this
model is commonly used to assess xenograft growth or
progression after transplantation of cancer cells transfected
with specific miRNA-expressing plasmids or empty vectors.

miR-7 in hepatocellular carcinoma (HCC) cells
miR-7 inhibits HCC cell growth and metastasis in vitro
and in vivo. Phosphoinositide 3-kinase catalytic subunit
delta (PIK3CD) was first identified as a miR-7 target, and
further study suggested that miR-7 might be a key regula-
tor of the PI3K/Akt/mTOR signaling pathway. In a xeno-
graft model, overexpressed miR-7 effectively repressed
tumor growth and decreased metastasis to the lung. These
findings indicate that miR-7 functions as a tumor suppres-
sor and plays a substantial role in inhibiting the tumori-
genesis and reversing the metastasis of HCC through the
PI3K/Akt/mTOR-signaling pathway. Given these results,
miR-7 may be a potential therapeutic or diagnostic/
prognostic target for treating HCC [49].

miR-520 in hepatocellular carcinoma (HCC) cells
The expression levels of miR-520e were decreased dramat-
ically in HCC cells and clinical HCC tissues resulting from
DNA hypermethylation in the upstream region of miR-
520e locus, whereas silencing of the expression of miR-
520e promoted cell proliferation [50]. Introduction of
miR-520e suppresses the growth of HCC cells in vitro by
targeting NF-κB-inducing kinase (NIK), which is involved



Table 2 Representative preclinical in vivo experiments

miRNA Cancer Target Result Reference

miR-221 HCC CDKN1B/p27, CDKN1C/p57,
Bmf, PTEN, TIMP3, DDIT4, mTOR

A transgenic mouse model of miR-221 overexpression in the liver was established, which is characterized
by the inevitable appearance of spontaneous liver tumors with diethylnitrosamine. When received an in vivo
intravenous injection of anti-miR-221 oligonucleotides exhibited a significant reduction in the number and
size of liver tumor nodules.

[48]

miR-7 HCC PIK3CD In a xenograft model, overexpressed miR-7 effectively repressed tumor growth
and decreased metastasis to the lung.

[49]

miR-520e HCC NIK HepG2 cells transfected with miR-520e or a negative control were injected subcutaneously into nude mice.
The introduction of miR-520e led to a significant reduction in both the size of tumor volume and the frequency
of tumor formation. In addition, direct intratumoral injection with miR-520e oligonucleotides repressed the growth
of HCC cells in an in vivo xenograft model.

[50]

miR-375 HCC AEG-1 Overexpression of miR-375 in liver cancer cells decreased cell proliferation, clonogenicity, migration, and invasion,
and induced G1 cell cycle arrest and apoptosis. Direct administration of cholesterol-conjugated 2’-O-methyl-modified
miR375 mimics significantly affected the growth of HCC xenografts.

[51]

miR-25 Colon cancer Smad7 In a xenograft model study, stable overexpression of miR25 in colon cancer cells suppressed tumor growth. [52]

miR-217 PDCA KRAS Xenograft tumors of PDAC cells were directly injected with miR217-expressing plasmids or a control
vector using in vivo-jet PEI. The results from these assays indicated that miR-217 suppresses tumor cell growth in vivo.

[53]

Oncogenic miRNA: miR-221.
Tumor suppressive miRNA: miR-7, 520, 375, 25,217.
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in NIK/ERK/NF-κB signaling. To determine the effect of
miR-520e on HCC cell growth in vivo, HepG2 cells trans-
fected with miR-520e or a negative control were injected
subcutaneously into nude mice. The introduction of miR-
520e led to a significant reduction in both the size of
tumor volume and the frequency of tumor formation. In
addition, direct intratumoral injection with miR-520e
oligonucleotides repressed the growth of HCC cells in an
in vivo xenograft model. This finding provides new insight
into the mechanism of hepatocarcinogenesis, indicating
the therapeutic potential of miR-520e in the treatment of
HCC [50].

miR-375 in hepatocellular carcinoma (HCC) cells
He et al. reported that miR-375 targets astrocyte ele-
vated gene-1 (AEG-1) in HCC and suppresses liver can-
cer cell growth in vitro and in vivo. Overexpression of
miR-375 in liver cancer cells decreased cell proliferation,
clonogenicity, migration, and invasion, and induced G1
cell cycle arrest and apoptosis. Direct administration of
cholesterol-conjugated 2’-O-methyl-modified miR375
mimics significantly affected the growth of HCC xeno-
grafts. These findings indicate that miR-375 targets AEG-
1 in HCC and suppresses liver cancer cell growth [51].

miR-25 in colon cancer cells
Li et al. reported that miR-25 was significantly down-
regulated in human colon cancer tissues, and identified
Smad7 as its direct target. In a xenograft model study,
stable overexpression of miR25 in colon cancer cells sup-
pressed tumor growth [52]. These results suggest that miR-
25 functions as a tumor suppressor by targeting Smad7 in
Table 3 Comparison of systemic delivery methods

Delivery method Features A

AMOs Complementary to mature miRNAs A

Modified AMOs

-OMe 2′-O-methyl modification M

-MOE 2′-O-methoxyethyl modification E

-LNA 2′,4′-methylene modification

Sponges Competitive inhibitors which are transcripts expressed
from plasmid with strong promoters, containing
multiple, tandem binding sites to the miRNAs
of interest.

S
m
o

AAV Adenovirus- associated vectors A
W
r

(PEI/miR complex) (Intratumoral injection) P
d
ePlasmid miRNA-expressing plasmids encapsulated in small

multilamellar cationic liposome (DOTAP/cholesterol)

CC9 A specific tumor-homing and -penetrating
bifunctional peptide conjugated with
oligonucleotides.

AMOs: anti-miRNA oligonucleotides.
LNA: locked nucleic acid.
colon cancer, suggesting that miR-25 may serve as a poten-
tial therapeutic target for colon cancer therapy.

miR-217 in pancreatic cancer cells
In most studies, cells overexpressing miRNAs or miRNA
antagonists are used for xenografts and subsequent ana-
lyses. However, Zhao et al. reported another method of
evaluating the function of miRNAs in vivo. They investi-
gated the biological role of miR-217 in PDAC cells in vitro
and in vivo since miR-217 is frequently down-regulated in
pancreatic ductal adenocarcinoma (PDCA) [59,60]. KRAS
was identified as a direct target of miR-217 and, concor-
dantly, up-regulation of miR-217 decreased KRAS protein
expression and subsequently reduced the constitutive
phosphorylation of downstream Akt. To confirm the
function of miR-217 in vivo, xenograft tumors of
PDAC cells were directly injected with miR217-
expressing plasmids or a control vector using in vivo-
jet PEI (Polyplus Transfection, Illkirch, France). The
results from these assays indicated that miR-217 sup-
presses tumor cell growth in vivo. Therefore, miR-217
may serve as a therapeutic target for miRNA-based
PDAC therapy [53].
Development of effective delivery methods for
miRNA-targeting oligonucleotides
The development of effective and safe delivery methods
of miRNA-targeting molecules is critical to the success
of miRNA-targeting drugs. Currently, modified oligonu-
cleotides and various delivery particles are being used
for these purposes (Table 3).
dvantage and disadvantage Reference

MOs are widely used to inhibit miRNAs in vitro and in vivo.

odified AMOs have more stability and efficiency than AMOs. [22],

[61-63]specially LNA increases the stability, efficiency and specificity.

ponges can block a whole family of related miRNAs. Selectable
arker or reporter gene in the vector allows to isolate a fraction
f cells in which the family of miRNAs is strongly inhibited.

[64-67]

AV are also widely used for systemic delivery.
hile the toxicity of viral mediated delivery is

arely reported, it remains controversial.

[47], [62],

[68]

EI/miR complex, plasmid and CC9 are probably useful for
elivery. However we cannot assure their utility because few
xperiments using them for delivery have been performed.

[69]

[70]

[47]
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Chemically modified anti-miRNA oligonucleotides (AM
Os) complementary to mature miRNAs are widely used
to inhibit miRNAs in vitro and in vivo. Effective AMOs
typically have proprietary modifications such as 2′-O-
methyl, 2′-O-methoxyethyl or 2′,4′-methylene (LNA)
[61], which increases their stability, efficacy [62,63], and
specificity [22].
In addition to LNA modification, other oligonucleotide

modifications to increase effectiveness and tolerability are
under development. These include cholesterol-conjugated
modified “antagomirs” [71,72] and “miRNA sponges”,
which are competitive inhibitors of small RNAs [64-67].
“miRNA sponges” are transcripts that contain multiple,

tandem binding sites to the miRNAs of interest. When
vectors encoding these sponges are transfected into cells,
multiple miRNA targets can be suppressed simultaneously
[64]; however, further experiments are necessary to dem-
onstrate the utility of the sponge method in vivo.
In terms of delivery methods, adenovirus-associated

vectors are used widely for systemic delivery [47,62]. How-
ever, while the toxicity of viral-mediated delivery is rarely
reported in in vivo studies [62,68], it remains controversial.
Novel nanoparticle-based delivery systems, which may be
safer and more amenable [47] than viruses, are being
developed. As mentioned earlier, the systemic injection of
low-molecular-weight PEI/miRNA mimic complexes has
proved useful for intratumoral delivery in xenograft models
[69]. Additionally, miRNA-expressing plasmids encapsu-
lated in small multilamellar cationic liposomes (DOTAP/
cholesterol), have been reported as a useful delivery method
in the mouse xenograft model [70].
AMOs such as LNA are currently the most promising

targeted therapy method in terms of safety, stability and
prominence. Continuing studies in vitro and in vivo are
undoubtedly critical to discovery of simple, efficient, and
safe delivery methods; this will facilitate the development
of miRNA-targeting therapies for human disease.

Conclusions
Along with recent discoveries of the diverse effects of
miRNAs in biological systems, miRNA-mediated inter-
vention is a promising avenue for the development of
novel therapeutics against human diseases. In addition
to the current success of anti-miR122 therapy against
chronic hepatitis C and the ongoing studies of miR-34
mimics against liver cancers in human clinical trials, the
results of preclinical studies will likely lead to human
clinical trials in the near future. However, several im-
portant issues must be addressed if this knowledge is to
be used effectively in clinical trials. These include the
delivery method, improved oligonucleotide modification
for delivery, and safety. Because of its relative novelty,
the safety of oligonucleotide therapy is an important
consideration. Since miRNAs generally have diverse
effects by targeting multiple mRNAs, undesired outcomes,
so called “off-target effects”, may be encountered even
when a specific miRNA is targeted. Effectiveness should
also be considered. Although most current trials target
individual miRNAs, targeting multiple miRNAs simultan-
eously may be necessary because most are considered
to function cooperatively [73]. Therefore, although our
understanding of miRNAs has increased, further research
is needed to transform this knowledge into effective thera-
peutics against human diseases.
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