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Abstract

targets in cancer gene therapy in the future,

Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble
molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between
tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore,
development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give
a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to
tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of
cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or
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Introduction
Normally, the extracellular matrix (ECM) is composed of
a dynamic 3D network of macromolecules, particularly
collagens, elastin, proteoglycans (PGs) and hyaluronan
(HA), and other non-collagenous matrix glycoproteins
[1,2]. In the ECM there are also ECM degrading enzymes
as well as a variety of soluble factors such as growth fac-
tors, chemokines and cytokines [1]. Furthermore, within
the ECM there are several cell types including fibroblasts,
adipocytes, epithelial and endothelial cells as well as differ-
ent immune cells [3]. The principal function of the ECM
is to maintain normal architecture and homeostasis of a
particular tissue. The composition of the ECM is unique
to each tissue and it undergoes constant enzymatic and
non-enzymatic modifications and remodeling processes
through a biophysical dialogue between its components
[4]. These modifications and remodeling processes re-
sult in versatile microenvironments, “niches”, which in
turn vitally regulate the behaviour of the cells within the
ECM [5].

In cancer, the malignant cells are known to create their
own tumour microenvironment (TME) which crucially
affects both the malignant cells themselves and all other
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cells within the ECM [5-8]. As tumours are composed of
a mixture of different cells, the effect of TME on the
malignant cells can vary depending on the cell type in
question. For example, cancer stem cells (CSCs), which
usually form a small portion of the whole tumour, can
create their own “CSC niche” within the TME which
then regulates their proliferation and also causes a bar-
rier to anticancer therapeutics [9]. Besides CSCs, in the
tumours there are also several other cell types like cancer-
associated fibroblasts (CAFs), tumour associated macro-
phages (TAMs) and neutrophils (TANs). The presence of
inflammatory cells emphasizes the importance of inflam-
mation in tumourigenesis [3]. Regarding TAMs, two sub-
types, namely M1 (tumour preventing) and M2 (tumour
promoting) have been recognized [10]. Similarly, TANs
have been shown to exhibit two separate phenotypes, N1
(phenotype with antitumoural properties) and N2 (protu-
moural phenotype) [11]. These cells represent the double
role of autoimmunity with both pro- and antitumoural
effects [12]. The above mentioned cells together with
CAFs are able to variously secrete ECM macromolecules
(e.g., collagen type I, biglycan, versican, fibronectin) as
well as growth factors and cytokines [e.g., vascular
endothelial growth factor (VEGEF), tumour necrosis factor
a (TNF-a) and interleukin 6 (IL-6)] contributing to
tumourigenesis [13-17].
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Apart from the ECM macromolecules, growth factors
and cytokines mentioned above, there are other essential
groups of molecules regulating tumour initiation and pro-
gression. For example, overexpression of ECM degrading
enzymes such as matrix metalloproteinases (MMPs) can
promote tumourigenesis. Indeed, in ovarian cancer the
expression of MMP-2 and MMP-9 has been shown to
correlate with poor survival indicating increased dissem-
inating capability of cancer cells [18,19]. In addition to
MMPs, other members of the metzincin superfamily
such as a disintegrin and metalloproteinases (ADAM) and
ADAM with thrombospondin motifs (ADAMTS) are
known to be critically involved in ECM turnover and re-
modeling during tumourigenesis [20-22]. The same ap-
plies to the family of lysyl oxidase (LOX) enzymes and
transglutaminases that also represent central molecules in
regulating ECM organization and tumour progression
[23,24]. Furthermore, cell membrane adhesion molecules
called integrins are importantly involved in the develop-
ment of tumours. For example, in prostate cancer metas-
tasis integrin av(6 expression has been shown to induce
the expression of MMP-2 which in turn mediates osteoly-
sis via its matrix degrading activity [25]. Certainly, other
molecules and mechanisms whereby TME is involved
in tumourigenesis could be presented [5,26,27].

Tumour progression also requires angiogenesis. Nor-
mally angiogenesis is strictly regulated. However, in the
TME various cells can overexpress angiogenesis stimu-
lating growth factors like VEGF ensuring oxygen and nu-
trient delivery to the growing tumour cell mass [28,29].
In addition to certain growth factors, specific ECM mac-
romolecules by themselves are known to be able to regu-
late angiogenesis [30]. As the central role of the ECM
and its components in tumourigenesis has become a rec-
ognized fact, to study the regulatory functions of the
ECM macromolecules in the TME is of vital importance
[31]. In this review we will focus on the ECM macro-
molecules in cancer and on the possibility to exploit
them as novel therapeutic tools or targets in cancer gene
therapy.

Review

ECM macromolecules and cancer

As mentioned in the beginning, ECM macromolecules
can be categorized into four main groups: collagens,
elastin and microfibrillar proteins, PGs and HA, and
other non-collagenous matrix glycoproteins [2]. From
these main groups, a subclass of secreted proteins, so-
called “matricellular proteins” can be segregated [32-34].
They comprise a group of ECM macromolecules includ-
ing thrombospondin- 1 and -2, SPARC (secreted pro-
tein, acidic and rich in cysteine), tenascin C (TN-C) and
osteopontin [34]. The matricellular proteins do not dir-
ectly participate in the formation of structural elements
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but are rather involved in the modulation of cell-matrix
interactions and cell function. For example, TN-C is
often associated with increased invasiveness of tumour
cells [35]. On the basis of the ability of individual ECM
macromolecules to form fibers, classification into fiber-
forming and interfibrillary matrix molecules can also
be made. Most of these ECM macromolecules have
been shown to be variously associated with cancer as
described below.

Collagen is the most prominent structural protein of
the ECM and 28 collagen types have been identified
[36]. Different collagens, particularly types I and III are
often associated with cancers such as breast and pancre-
atic cancers resulting in increased stromal collagen accu-
mulation and promotion of cancer progression [37-40].
In breast cancer, collagen accumulation together with in-
creased expression of small leucine-rich proteoglycans
(SLRPs) decorin and lumican has been shown to correl-
ate with increased mammographic density [41]. Also
degradation of specific collagens has been observed dur-
ing metastasis and the resulting collagen fragments can
recruit e.g. TAMs whose abundance in tumours predicts
poor prognosis [39,42]. On the other hand, degradation
of collagen type XVIII resulting in the formation of
endostatin causes inhibition of angiogenesis and thereby
retards tumour growth [43]. Furthermore, some colla-
gens such as type XXII and XXIV have been referred to
have prognostic value in certain cancers [44].

Similarly to the richness of collagen types, over 30
mostly extracellular PG species have been identified
[45,46]. With few exceptions PGs comprise a protein
core to which one or more glycosaminoglycan (GAG)
side chains are covalently linked. Many of the PGs, like
certain family members of the SLRPs have been shown
to be involved in the organization of the ECM [47]. For
example, the SLRPs decorin, biglycan, fibromodulin and
lumican are centrally involved in the regulation of colla-
gen fibrillogenesis [48-51]. The above mentioned SLRPs
are also variously involved in tumourigenesis. Especially
decorin has a recognized regulatory role in tumour de-
velopment, most notably via its ability to down regulate
several members of the receptor tyrosine kinase (RTK)
family members such as the epidermal growth factor re-
ceptor (EGFR) [52-54]. Furthermore, decorin can regu-
late the activity of the Met receptor, i.e., the receptor for
hepatocyte growth factor, and the insulin-like growth
factor receptor I (IGF-IR) [55,56]. Interestingly, decorin
can also regulate tumour angiogenesis by reducing
the production of e.g., VEGF [57,58]. Other mechanisms
whereby decorin contributes to tumour growth will be
discussed later on. Regarding lumican, it has been shown
to variously modulate proliferation, migration and adhe-
sion of cancer cells. For example, inhibition of tumour cell
migration by lumican has been shown to be mediated
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via its interaction with a2p1 integrin [59]. Similarly to dec-
orin, lumican can also regulate cancer associated angio-
genesis [60].

Hyaluronan is a versatile non-sulfated GAG that consists
of repeating D-glucuronic acid and N-acetyl-D-glucosamine
disaccharides. It has a widely recognized tumour promot-
ing role in several cancer types such as prostate, ovarian
and breast cancers via activating e.g., CD44 and RHAMM
(receptor for hyaluronan-mediated motility) mediated sig-
naling pathways including NFkB and mitogen-activated
protein kinase (MAPK) pathways [61-63]. Indeed, its stro-
mal accumulation is typical of progressed and undifferen-
tiated tumours predicting poor prognosis [64-66].

Non-collagenous matrix glycoproteins like fibronectin
have also been linked with cancers such as lung cancer,
where its overexpression correlates with invasive and meta-
static phenotype [67]. Fibronectin can bind to other ECM
molecules and integrins including a,f33 and thereby regulate
among its other functions cell adhesion and Epithelia-
Mesenchymal Transition (EMT) [68]. Different ECM mol-
ecules may also exist as tumour promoting splice variants
as has been described e.g. for TN-C in breast cancer [69].

En bloc, ECM macromolecules are of central import-
ance in cellular biology and they must act in concert in
a finely regulated manner to maintain homeostasis and
cellular functions within tissues and organs [70]. When
the ECM is affected by inherited defects or its components
are dysregulated, the proper 3D network of the matrix is
lost and the cell-matrix interactions are hampered leading
to or enabling different disease processes. Below, we will
present some mechanisms whereby ECM macromolecules
promote or alternatively inhibit tumourigenesis.

ECM macromolecules as regulators of tumourigenesis
within the TME

Remodeling of the ECM is considered one of the earliest
steps in the formation of TME which involves most
ECM proteins [71]. Today we understand that there is
an interaction between ECM macromolecules and can-
cer cells within each specific TME that can either facili-
tate or counteract the growth of solid tumours [9,72,73].
The TME can also restrict drug delivery to malignant cells
[3,9]. As different ECM molecules possess central func-
tional roles in various cellular events crucial in tumouri-
genesis like proliferation, adhesion, migration, survival
and differentiation of the cells, they represent potential
and novel targets and tools for pharmacotherapy [2].

With the help of the TME, cancer cells are able to ex-
ploit various mechanisms that can increase their malig-
nancy and survival, e.g. they use autophagy to survive in
nutrient-limited and hypoxic microenvironments [74].
On the other hand, autophagy has also been linked to
suppression of tumourigenesis through elimination of
p62 in tumour cells [75]. Interestingly, the SLRP decorin
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has been found to act as a regulator of endothelial cell
autophagy which results in the inhibition of angiogenesis
and suppression of tumour growth [76]. More precisely,
soluble decorin induces the expression of Peg3, a tran-
scription factor usually silenced in cancer and causes in-
hibition of endothelial tubulogenesis and cell migration
[77]. In addition to regulating autophagy, decorin is able
to cause mitostatin-dependent mitophagy by inducing the
expression of mitostatin via the Met receptor (the receptor
for hepatocyte growth factor) resulting in concurrent de-
crease in VEGF-A transcription in breast cancer cells and
subsequently inhibition of angiogenesis [78].

Other mechanisms that can be exploited by cancer cells
via ECM macromolecules are Epithelia-Mesenchymal Tran-
sition (EMT) and its reverse process called Mesenchymal-
Epithelial Transition (MET) [79]. The epithelial plasticity
is a central part of normal development, but its regulators
including myc, growth factors such as TGF-B, and B-
catenin can be misexpressed in cancers like breast [80],
ovarian [81] and colon [82] cancers, respectively. This
plasticity provides tumour cells with phenotypes which
enable them to escape from the primary tumour. As
breast cancer cells among other malignant cell types are
known to secrete TN-C, an ECM macromolecule often as-
sociated with the invasive front of tumours [83,84], its ex-
pression together with the production of TGF-B1 can
cause the malignant cells to undergo EMT [85]. Further-
more, integrins avpl and avP6 are able to independently
participate in this TN-C-induced EMT-like change [86].
The EMT also involves several other molecules including
cadherins, focal adhesion molecules and proteolytic
enzymes, e.g. MMPs [87]. All the above mechanistical
possibilities have to be taken into account when novel
therapies focusing on the ECM are developed.

ECM macromolecules as tools or targets in gene therapy
As discussed above, marked quantitative changes in the
composition of the ECM macromolecules are a typical
feature of different types of cancer. However, the distinc-
tion must be made whether these changes are the cause
of the malignant disease or the result of it [7]. In spite of
this, because individual ECM macromolecules can sig-
nificantly influence cell behaviour and disease processes,
modulation of the ECM composition provides a rational
way to be used as an optional novel therapy in diseases
like cancer. This modulation could be achieved with a
number of approaches including gene therapy where spe-
cific ECM macromolecules are used as tools or targets.

Challenges using gene therapy

Generally, the development of gene therapy sets several
challenges [88]. These challenges include choice of the
vector to deliver the gene, the delivered gene itself and
the route of administration. Furthermore, viruses must
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target diseased cells with enough large numbers to achieve
wanted effects and at the same time with minimal destruc-
tion of the normal cells [89,90]. Timing of the gene deliv-
ery is also a critical issue to be considered because several
tumours undergo marked temporal changes, as can be
seen e.g. during the initiation and progression of pancreatic
cancer [91]. Some tumour types like pancreatic cancer can
also contain vast amounts of HA resulting in exceptionally
high interstitial fluid pressure in solid tumour tissue, which
in turn can prevent perfusion and diffusion of small mol-
ecule therapeutics [92]. In addition to the above challenges,
alterations in the chemomechanical environment of cancer
cells has to be recognized [5,93-95].

When gene therapy for cancer using or targeting ECM
macromolecules is developed, the challenges can be-
come even more sophisticated. For example, regarding
the timing of gene therapy it is noteworthy to take into ac-
count that collagen expression has been discovered to
have a dual role in tumour progression; different collagen
types can either restrict or promote tumour development
depending on the stage of the tumour [6,96]. Furthermore,
phenomenon known as desmoplastic reaction, i.e., the for-
mation of a sclerotic stroma around the cancer cell popu-
lation due to the overexpression of certain collagen
types can make the gene targeting problematic [7]. This
dense fibrotic deposition is typical of cancers like colorec-
tal [97,98], pancreatic [99,100] and liver [101] cancers. In
addition to the possible increased amount of ECM macro-
molecules around the cancer cells, most cancers are of
epithelial origin and still maintain intercellular junctions
despite their de-differentiated nature further restricting
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gene targeting [102]. However, it is possible to overcome
these challenges as is discussed in the following two sec-
tions. Thus, gene therapy may have a promising future.

Strategies to overcome ECM macromolecule formed barrier

in cancer treatment using gene delivery

Excess accumulation of the ECM macromolecules in the
TME plays a critical role in blocking the transport of
therapeutics to the target cells. Specifically, fibrillar col-
lagen and collagen-proteoglycan bonds can form a major
limit to the delivery of gene vectors [103,104]. Even
nanomedicine utilizing nanoparticles can confront this
same problem [105]. Regarding drug penetration to the
tumour, the use of ECM macromolecules in gene therapy
could provide a solution. For example the use of decorin
containing replicating oncolytic adenovirus can increase
drug penetration to solid tumours leading to a dramatic
anti-tumour effect [102]. This beneficial effect of decorin
gene delivery has been suggested to be based on decreased
expression of other ECM molecules within the tumour tis-
sue [102]. The physical barrier formed by ECM macromol-
ecules is also possible to overcome by the administration
of hyaluronidase (HAase) or collagenase containing
oncolytic adenoviruses, which have been found to lead
to significant tumour regression [106-108]. Additionally,
the use of HAase can enhance the action of immune
effector cells via degradation of the HA formed halos
around cancer cells like adherent fibrosarcoma cells [109].
Treatment with HAase has also been shown to stimulate
hematopoiesis and to increase the number of neutrophils
in the peripheral blood [110].

1. Improved drug
penetration

5. Decreased cancer

cell tumourigenicity
Proliferation ¢
Migration
Differentiation
Adhesion T
Apoptosis

2. Improved immune
cell function

3. Encapsulation of
the tumour

4. Inhibition of tumour
angiogenesis and
lymphangiogenesis

tumour microenvironment.

Figure 1 Schematic representation of the desired effects of ECM-based gene therapies in cancer. 1. Degradation or reorganization of ECM
macromolecules in the TME enables more efficient drug delivery to the tumour. 2. Degradation of ECM macromolecules, e.g. degradation of HA
formed halos around cancer cells can enhance action of immune cells. 3. Encapsulation of the tumour mass with specific ECM macromolecules
could inhibit tumour growth and metastasis. 4. Diminished tumour angiogenesis and lympangiogenesis can cause tumour necrosis and
prevent metastasis. 5. Manipulation of 3D structure of the ECM in TME can decrease cancer cell tumourigenesis via various mechanisms. TME:
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Applying the same ECM degrading principle with
other enzymes such as MMPs can be valuable [111]. For
example, adenoviral expression of MMP-8, which breaks
down collagen type I, II, and III, is a potential strategy
for improving ECM hindered drug penetration or viral
spread [112]. Apart from degrading excess ECM in the
tumour matrix, reducing ECM production or modifying
ECM organization by means of pharmacological inter-
vention offers potential strategies to improve drug pene-
tration [113,114]. This kind of manipulation of the
tumour matrix structure can be considered as “matrix
normalization” [105,113,114].

Inhibition of tumour progression using selected ECM
macromolecules via gene delivery

A myriad number of ECM macromolecules are known
to be involved directly or indirectly in tumourigenesis
[5]. This provides several possibilities for using ECM
macromolecules as tools in gene therapy. For example,
expression of human decorin ¢cDNA via adenovirus me-
diated transfection has been demonstrated to induce
specific and even distant apoptosis of cancer cells dem-
onstrating a direct antitumourigenic effect of decorin
[115,116]. In addition to decorin, there are other PGs
such as lumican and its core protein called lumcorin that
have been found to possess antitumourigenic functions
and could therefore be used as a chosen molecule in gene
therapy [117-119]. Furthermore, human fibronectin con-
taining recombinant adenovirus has been shown to be a
promising strategy as a novel gene therapy against meta-
static breast cancer via its inhibitory effect on adhesion
of cancer cells to ECM molecules [120]. Additional ECM-
based gene therapy strategies also exist. Regarding HA,
interactions between HA and its major cell surface re-
ceptor, CD44, have raised interests on the basis of influen-
cing on CD44 variants (CD44v) of cancer cells [121]. For
example, cell-specific delivery of shRNA (short hairpin
RNA) targeting HA-CD44v6 has been shown to lead to
marked inhibition of tumour growth in mice [122]. In
the case of collagen, particularly the 20 kDa C-terminal
cleavage product of collagen type XVIII (endostatin) pro-
vides a very potent candidate in gene therapy in the
future [43]. Endostatin is able to markedly inhibit not
only angiogenesis but also lymphangiogenesis [123].
Adenoviral transfection carrying endostatin to bladder
cancer cells in mouse models has already been shown
to significantly decrease tumour progression via angio-
genesis inhibition [124]. In theory, gene delivery of specific
ECM macromolecules such as collagen and decorin
could also be applied to encapsulate the tumour mass,
thus possibly restricting tumour growth and metastasis
[7,58]. A summary of the desired effects of different
ECM-based gene therapies on tumours is presented
in Figure 1.
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Conclusions

The ECM has a recognized role in the regulation of key
cellular functions such as adhesion, proliferation, migra-
tion and apoptosis. Also the differentiation of normal
and cancer associated cells is known to be highly
dependent on the interaction of the cells with their
microenvironment. Therefore, the ECM is critically in-
volved in various disease processes including tumouri-
genesis where significant changes in the composition
and structure of the ECM can be observed. Although it
has not been clearly established whether the observed
ECM changes are the cause or the result of various dis-
eases including cancer, strategies to modulate the struc-
ture of the ECM offers therapeutical possibilities. These
could be achieved e.g. via gene therapy utilizing specific
ECM macromolecules as tools and/or targets. As dis-
cussed in this review, the current literature offers solid
rationale to the development of gene therapies focusing
primarily on the ECM. However, several challenges must
still be resolved. These include choice of the vector and
the delivered gene itself, timing of the delivery and route
of administration. Nevertheless, ECM-based gene ther-
apies form a very attractive and promising field of re-
search that is likely to advance novel treatments of
cancer in the future.
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