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Abstract

cure of HIV.

Defining how HIV does, and does not, kill the host CD4 T cell that it infects is of paramount importance in an era
when research is approaching a cure for infection. Three mutually exclusive pathways can lead to the death of
HIV-infected cells during the HIV life cycle, before, coincident and after HIV integration and consequently may affect
viral replication. We discuss the molecular mechanism underlying these pathways, the evidence supporting their
roles in vivo, and contemplate how understanding these pathways might inform novel approaches to promote viral
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Introduction

In the past 33 years of the HIV pandemic, there has
been monumental progress in the clinical management
of HIV disease. Once considered a death sentence due
to the inexorable decline in CD4 T cell number and
function over time ultimately leading to AIDS, patients
with HIV infection who have access to effective anti-
retroviral therapy (ART) now have a near normal life ex-
pectancy [1,2]. In the first 15-20 years of the pandemic,
during a time when effective ART was unavailable or in
its infancy, there was intense scientific interest and
inquiry into molecular mechanisms of HIV replication,
in order to develop effective drugs with which to inhibit
HIV replication in vivo. In the past 15 years, multiple
drugs in multiple classes have been developed and much
has been learned about how best to use combinations of
agents. Now it is possible, and even expected, that clin-
ical viral suppression can be achieved, with consequent
immune reconstitution. However treated individuals still
have excess morbidity and mortality when compared to
uninfected persons, due largely to accelerated aging and
age related diseases such as cardiovascular disease [3],
metabolic syndrome [4], solid organ malignancies [5],
neurocognitive and functional decline [6] and osteo-
porosis [7,8].
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In the past two years, there has been a fundamental
shift in the focus of HIV research, now aimed directly at
achieving either a sterilizing cure (eradication of HIV
from cells and tissues) or a functional cure (spontaneous
control of HIV such that ART is not needed to preserve
immune function). Long considered quixotic, the search
for a cure for HIV has been spurred by the case reports
of a small number of patients who have had HIV eradi-
cated [9,10]. The central enigma of strategies attempting
to achieve a sterilizing cure is that while HIV virions and
many HIV proteins individually can cause death of im-
mune cell subsets, a subset of infected cells do not die.
Yet, in order to cure HIV, all (or nearly all) HIV infected
cells must die, while preserving as many non-infected
cells as possible. This has proven to be a difficult task,
and has brought back into focus research on how HIV-
infected cells die, and how that might be manipulated to
achieve a cure. It is therefore of great interest to under-
stand how cells which contain HIV die (Figure 1).

Both HIV-infected and uninfected CD4 T cells die during
HIV infection

HIV induces cell death in both uninfected and infected T
cells. The mechanisms of uninfected T cell death during
HIV infection have been reviewed extensively elsewhere
[11]. Briefly, so-called “bystander” T cells die from aber-
rant apoptosis induced by a number of stimuli, including
over-expression of death ligands (Fas Ligand, TNF and
TRAIL) on immune cells; direct cytotoxicity of a number
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Figure 1 Pathways of CD4 T cell death in HIV infection. Depicted are the described pathways for both uninfected and infected CD4 T cell
death in the context of HIV infection and whether progeny virions are produced as a result of the pathway. Examples are provided describing the
pathogenicity of the pathway in relevant in vitro models. Specific in vivo support of the pathwaysm biologic relevance are also described.
Theoretical ways to inhibit the described pathways are conjectured. References [26-28,37-44].
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of soluble HIV proteins (e.g. Gp120, Tat, Nef, Vpr); and
activation-induced cell death driven by a chronically acti-
vated and hyper-inflammatory immune state associated
with HIV infection. It is quite possible that these inducers
of cell death also affect HIV-infected cells, but by their na-
ture are not unique to HIV-infected cells. Other cell death
mechanisms, for instance autophagy, have been described
in the context of in vitro HIV infection, but have not yet
been defined with regard to infected or bystander cell
death [12,13]. A number of studies have observed that
uninfected T cell death predominates in untreated HIV in-
fection, and that the death of these uninfected cells drives
the immunodeficiency associated with untreated HIV dis-
ease [14-16]. Consistent with this model, it is clear that
aberrant apoptosis, including that of uninfected cells, is
significantly reduced with virologic suppression by anti-
retroviral therapy [17,18], which is a sine qua non of inves-
tigative cure strategies. However, in order to achieve a
cure for HIV infection, strategies must be developed
which favor the death of those cells which despite treat-
ment, still contain HIV.

One may question what evolutionary advantage is
gained by a retrovirus inducing apoptosis in a cell that it
infects. In fact, the significant presence of endogenous ret-
roviruses in the human genome [19] and the presence of
natural, non-progressive SIV infections in non-human
primates [20] argue in favor of evolutionary co-adaptation

to avoid infected cell apoptosis. However, our group and
others have shown that HIV-induced cell death actually
increases HIV replication via NF-kB activation by the
Bcll0/MALT1/CARMA complex, a process which is de-
pendent on active caspase 8 [21-24]. This suggests that
the virus has evolved in a way to overcome the potential
replication-limiting outcome of infected cell death.

A tripartite approach to infected cell death

Infection of a CD4 T cell by HIV results in one of three
outcomes. If the cell is not permissive to infection, either
due to activation state or expression of pre-integration
cellular restriction factors, the cell is abortively infected,
i.e. the viral life cycle ends before integration into the
host genome. If the cell is permissive to infection, fol-
lowing attachment, the viral life cycle is completed and
progeny virions are produced, and that cell is considered
productively infected; in some cases productively infected
cells can revert to latency wherein viral proteins are no
longer produced. In a permissive cell, when HIV infection
and integration occurs, in some circumstances no proviral
transcription occurs, no viral proteins are transcribed, and
the cell is considered latently infected. The existence of
these long-lived latently infected CD4 T cells represents
the major obstacle to HIV eradication, as they have long
half-lives, do not replicate HIV and therefore are not im-
pacted by HIV therapies which target viral proteins, and
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are not targeted by host immune mechanisms which
target HIV antigens. Moreover the potential presence of
productively infected cells which could continuously re-
plenish the latent reservoir may present further challenges
for HIV eradication strategies; although mathematical
models suggest that these productively infected cells may
not contribute significantly to the latent reservoir [25].
Finally, a number of endogenous and exogenous factors
can reactivate viral transcription in latently infected cells,
which re-establishes productive infection.

Pre- integration HIV-induced infected cell death

A series of studies [26-28] have convincingly described
how CD4 T cells abortively infected with HIV die se-
condary to caspase-1 dependent pyroptosis, a form of
inflammatory programmed cell death. Using human lym-
phoid aggregate cultures (HLAC) infected with a GFP-
expressing HIV, the majority of CD4 T cells that die in the
ex vivo system do not have integrated HIV nor do they ex-
press GFP, and hence are not productively HIV-infected
[26]. Cell death does require HIV entry, as inhibitors of
HIV entry, including AMD3100 (co-receptor CXCR4
inhibitor) and T20 (viral gp41 inhibitor) prevent CD4
T cell depletion in the infected HLACs. Interestingly, non-
nucleoside reverse transcriptase inhibitors (NNRTIs) and
integrase inhibitors (INSTIs) also inhibit CD4 T cell de-
pletion, but not nucleoside RTIs (NRTIs), suggesting that
accumulation of early reverse transcripts is toxic in abor-
tively infected cells. Dying cells but not the surviving cells
have activation of caspase-1 and caspase-3, as indicated by
FLICA™ probes and enzymatic activity assays, and con-
sequently produce interleukin-1p as a consequence of
caspase-1 activation. Activation of both caspase-1 and
caspase-3 define pyroptosis, (as opposed to apoptosis) and
it is a prototypic, but not the only, form of cell death that
is associated with inflammation.

Using DNA affinity chromatography and mass spec-
trometry, interferon-y-inducible protein 16 (IFI16), a com-
ponent of the inflammasome [28], was identified to bind
HIV-1 Nef DNA. shRNA against [FI16 abrogates ac-
tivation of caspase-1 after HIV infection and protects CD4
T cells from death in the HLAC model. When added to
the HLAC model, caspase-1 inhibitors inhibit cell death in
abortively infected, resting CD4 T cells [27], whereas in-
hibitors of caspase-3 and caspase-6 as well as necrostatin
(a RIPK1 inhibitor) do not. These results were confirmed
using ShRNA-mediated knockdown. Notably, a minority
of cell death in the HLAC model occurred in activated
productively infected CD4 T cells, which was blocked by
selective caspase-3 inhibitors.

A number of host cellular proteins have been demon-
strated to restrict HIV replication events prior to HIV
integration. APOBEC3G is a cytidine deaminase that in-
duces G to A hypermutation in viral DNA. This effect
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can be counteracted by HIV-1 protein Vif (virion in-
fectivity factor) [29-31]. TRIMbalpha is another cellular
innate antiviral protein, which disrupts the uncoating
process of HIV-1 capsid weakly inhibiting successful re-
verse transcription [32]. P21, a cyclin dependent kinase
inhibitor, likely acts as a restriction factor by several re-
ported mechanisms, including blocking HIV integration
in primitive hematopoietic cells [33,34]; inhibiting ANTP
biosynthesis by repressing ribonucleotide reductase 2
[35]; and regulating phosphorylation of SAMHD1 [36].
Together, these pre-integration restriction factors poten-
tially serve to prevent HIV-infected cell death.

HIV-integration induced infected cell death

An alternate mechanism of HIV-infected cell death is
dependent upon the host cell response to HIV integration
[37]. Using in vitro infection of T cell lines and activated
primary CD4 T cells, in contrast to the findings described
above, all three classes of ARV: NRTIs, NNRTIs and
INSTIs, (plus a protease inhibitor [PI] to prevent sprea-
ding infection), inhibited HIV-induced cell death. Further-
more, wild type, Tat-deficient and Rev-deficient HIV
all caused HIV-infected cell death whereas integrase-
deficient HIV did not, suggesting that integration was
necessary for HIV-induced cell death in activated cells.
Accordingly, pharmacologic inhibition of integrase activity
with INSTIs in ex vivo HIV-infected primary cells de-
creased cell death. Wild type, but not integrase-deficient
HIV, caused phosphorylation and activation of DNA-
dependent protein kinase (DNA-PK), a cellular censor of
double stranded DNA breakage. DNA-PK activation leads
to phosphorylation and activation of p53 and initiation of
p53-dependent cell death pathways. Pharmacologic inhi-
bition of DNA-PK decreased both activation of p53 and
CD4 T cell death, solidly implicating this pathway in HIV-
infected cell death in activated cells.

Post-integration HIV-induced infected cell death

A final mechanism of cell death occurs exclusively in
productively HIV-infected cells through a process which
requires HIV protease. It has long been observed that
expression of HIV protease in cells is an intrinsically
cytotoxic process [38]. A series of studies using cell free
lysates, knockout cells, and in vitro digestion followed
by mass spectroscopy, demonstrate that HIV protease,
which is known to have a degenerate substrate speci-
ficity, cleaves the cellular protein procaspase-8 between
amino acids 355 and 356 to generate a novel caspase-8
fragment, termed Casp8p41l [39-41]. Casp8p4l is mis-
sing the catalytic cysteine at position 360, and therefore
does not have intrinsic proteolytic activity. However ex-
pression of Casp8p41 independently induces activation
of NF-kB, which in turn drives both expression of pro-
inflammatory cytokines [42] and up-regulates HIV-LTR
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transcription [23]. In addition, Casp8p41 translocates to
the mitochondria, where it induces depolarization of the
mitochondrial outer membrane, resulting in release of
cytochrome c¢ and activation of caspase-3 and initiates
the phenotypic changes of apoptosis [43], in a Bax/Bak
and pro-caspase 9 dependent manner [44]. T cell lines
genetically deficient in procaspase-8 are partially resis-
tant to HIV-induced cell death, while reconstitution of
these cells with wild type procaspase-8 restores HIV-
induced cell death; whereas cells reconstituted with
procaspase-8 that cannot be cleaved by HIV protease do
not fully recapitulate the wild type phenotype [41].

Relevance of HIV-infected cell killing in vivo

An abundant and inconvenient truth concerning apop-
tosis is that it is extremely difficult to determine how a cell
has died after death has begun, and the cellular features of
death are underway. This is because most forms of cell
death (including forms that occur as a consequence of
HIV infection) cause activation of nucleases and proteases,
which allow detection of the dying cell (through tech-
niques such as TUNEL staining, or identifying the pre-
sence of active Caspase 3). However these same nucleases
and proteases inhibit detection of HIV nucleic acids or
HIV proteins, which are necessary to define which cells
are and are not infected with HIV. Thus direct demonstra-
tion that a cell is HIV-infected (i.e. contains HIV DNA or
RNA or protein), is dying (is TUNEL positive), and has
died due to a particular pathway (such as Fas ligation) is
technically difficult, if not impossible. This is true both
in vitro and especially in vivo.

To search for the relevance of the three pathways of
infected cell death described above, most studies involve
interrogation of specific markers within lymphatic tissues
or blood from HIV-infected persons. Active caspase-1 and
IL-1p have been observed by immunohistochemistry
(IHC) of a lymph node from a viremic HIV-infected pa-
tient [27]. However, it is unknown whether the caspase-1
and/or IL-1f positive cells were abortively infected or if
another stimulus, such as TLR4 stimulation from lipo-
polysaccharide could have induced inflammasome activity.
Similarly, while active p53 has been demonstrated in per-
ipheral blood mononuclear cells and lymph nodes from
HIV infected patients [45,46], since p53 can be activated
by a numerous stimuli, it is unknown whether its activa-
tion in these patients was due to HIV integration and
DNA-PK. Conversely, since Casp8p41 is only generated
by HIV protease, its detection is by definition evidence of
active HIV protease, which only occurs in HIV-infected
cells. Casp8p41 is detectable by neoantigen specific mono-
clonal antibody IHC in lymph nodes from HIV-infected
subjects, where Casp8p41 expression co-localizes with ac-
tive caspase-3 [41]. Casp8p41 is also detectable in PBMCs
from HIV-infected subjects, particularly in the memory
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subset of CD4 T cells [47]. In viremic patients, Casp8p41
expression in memory CD4 T cells is inversely associated
with CD4 T cell count, and decreases in Casp8p41 expres-
sion after initiation of ART are associated with increases
in CD4 T cell count [47]. In addition, persistent expression
of Casp8p41 in memory CD4 T cells in virologically sup-
pressed patients is associated with increased risk of CD4
T cell declines over time, despite continued virologic sup-
pression [48]. Finally, mutations in HIV protease that are
over-represented in patients with preserved CD4 T cell
counts despite virologic failure of ART, when introduced
into HIV protease, have an impaired ability to cleave
procaspase-8 and generate Casp8p4l despite cleaving
Gag/Pol normally [49], suggesting that impaired Casp8p41
production contributes to preserved CD4 T cell counts in
some patients with resistance to ART.

Relevance of Infected cell killing to HIV pathogenesis and
the HIV cure agenda

Since the IFI16 and DNA-PK death pathways are de-
pendent on viral attachment and entry, yet kill cells prior
to or coincident with integration and HIV replication, they
likely contribute to CD4 depletion and immunodeficiency
that occur during untreated HIV infection when robust
viral replication occurs. In the setting of suppressive anti-
retroviral therapy, when viral replication is decreased by
orders of magnitude, new rounds of viral attachment and
entry are rare events and therefore cell death by IFI16 and
DNA-PK are also likely rare events. By definition, the cells
which are latently HIV infected and contain integrated
HIV DNA have already survived through the points in the
viral life cycle when IFI16 and DNA-PK mediated killing
occur. By contrast, the Casp8p41 death pathway is always
a rare event — typically less that 0.1% of memory CD4
T cells [47]. Unlike pretranscriptional pathways of HIV in-
fected cell death however, the Casp8p41 pathway is likely
of relevance, or potential relevance, in latently-infected
cells induced to reactivate virus. Indeed, since HIV reacti-
vation does not result in the death of reactivating cells
[50,51], yet it does produce progeny virions (de facto de-
monstrating that HIV protease is active), it is of pressing
interest to understand whether these cells are capable of
generating Casp8p41, and why these cells do not die in a
Casp8p41 (or any other pathway) -dependent manner.

Potential to manipulate HIV infected cell death pathways

Understanding these pathways by which HIV causes in-
fected cells to die, allows studies designed to modify these
pathways, for the potential therapy of HIV. Small molecu-
lar inhibitors of procaspase-1, including VX-740, VX-765
and IDN-6556, are in various stages of clinical develop-
ment for a number of inflammatory disorders [52-54].
Small molecular inhibitors of DNA-PK are in early devel-
opment but have yet to enter clinical trials due to poor
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pharmacokinetic parameters of current agents [55]. The-
oretically these two classes of agents may be able to inhibit
pyroptosis and apoptosis of cells induced to die by IFI16
and/or DNA-PK dependent pathways respectively. Cleavage
of procaspase-8 by HIV protease is inhibited by HIV-
protease inhibitors (PIs) [56], for which there is ample
data demonstrating improvements in CD4 T cell number
[57], including improvements in CD4 T cell numbers
independent of antiviral effect [58]. However there are
numerous off-target effects of PI, including intrinsic anti-
apoptotic effects, which likely confound these observations.
Assuming that Casp8p41 could be selectively inhibited,
inhibiting it or any of the HIV-infected cell death pathways
would predictably lead to increased CD4 T cell counts, yet
these cells would still be infected, and in our opinion would
likely be inappropriately activated and likely anergic, and
dysfunctional. From a virologic standpoint, inhibiting cell
death induced by any of these pathways might also be
counterproductive. Inhibiting death of infected cells, either
pre or post integration would predictably increase the pool
of cells which contain cell associated HIV DNA, thereby
hindering attempts at eliminating that reservoir.

Favoring death of infected cells, by enhancing infected
cells sensitivity to apoptotic stimuli, though, may be more
attractive. This hypothetical model by which to eradicate
HIV has been previously proposed as the “Prime, Shock
and Kill” model [59], in which a priming agent that sensi-
tizes cells toward a pro-apoptotic phenotype is adminis-
tered prior to or alongside a reactivating agent so that
cells replicating HIV will be induced to die. Specificity for
HIV-infected cells, and HIV-induced cell death mecha-
nisms, will be critical for this approach to be effective and
clinically applicable, in order to avoid potential toxicities
related to inducing apoptosis of healthy cells.

Conclusions

It is likely that HIV kills infected CD4 T cells through a
number of mechanisms, including the three described. As
current and future research efforts focus on HIV eradica-
tion, insights into how HIV kills some, yet not all, infected
CD4 T cells, thereby allowing latency to be established,
may yield novel drug-able targets against which either mo-
lecular or cellular therapies might be developed. Future re-
search is needed to elucidate the molecular mechanisms
involved in protecting latently infected cells from HIV-
mediated killing, even after reactivation of viral replication.
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