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Targeting the Wnt pathways for therapies
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Abstract

The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the
adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this
pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the
Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in
regeneration failure and degeneration. These both medically important implications are unified by the emerging
importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue
regeneration and, in case of cancer stem cells – cancer progression and relapse. This article aims at briefly reviewing
the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical
developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
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Introduction: the Wnt signaling pathways
The Wnt signaling plays instrumental roles in animal de-
velopment [1]. This type of intracellular signaling appar-
ently was ‘invented’ together with (or in requirement for)
animal multi-cellularity, as its architecture and compo-
nents are already present in the simplest metazoans such
as sponges and ctenophores [2,3]. The pathway is initiated
by secreted lipoglycoproteins of the Wnt family, of which
19 members exist in humans. Given the numerous post-
translational modifications and the need for a tightly con-
trolled manner of Wnt diffusion through the tissue, the
secretion apparatus within the Wnt-producing cells is ra-
ther complex [4]. In the signal-receiving cells, Wnt acti-
vates a receptor of the Frizzled (FZD) family (10 members
in humans) and a LRP5/6 co-receptor (2 members in
humans). While LRP5/6 are single-transmembrane pro-
teins, FZDs possess seven transmembrane domains and
belong to the G protein-coupled receptor (GPCR) super-
family [5]. Although initially questioned as functional
GPCRs, FZDs in recent years have been clearly demon-
strated, by genetic and biochemical means, to signal
through heterotrimeric G proteins [6-11]. Together with
the latter, a cytoplasmic protein Dishevelled (Dvl) acts
as an immediate transducer of the signal from the
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receptors [12]. Both types of transducers act on Axin
[13,14] – a key component of the β-catenin-destruction
complex also including the protein APC and kinases
GSK3β and casein kinase. The function of this complex
is to phosphorylate cytoplasmic β-catenin, targeting it
for ubiquitin-dependent proteasomal degradation [15].
With dysfunctional Axin, the destruction complex be-
comes inactive, leading to accumulation of β-catenin, its
translocation to the nucleus, and activation of LEF/TCF-
dependent transcription [16] (Figure 1). Among Wnt-
target genes are pro-proliferative c-Myc and cycD1 [17]. In
addition to the pathway directly initiated from the plasma
membrane, Wnt-receptor complexes can also be internal-
ized, in a heterotrimeric G protein- and Rab5-dependent
manner, into signaling endosomes, which is required for
the amplification of the signaling strength [18,19].
The β-catenin-dependent Wnt signaling pathway de-

scribed above is often referred to as the “canonical” Wnt
signaling. In addition to it, a group of “non-canonical”,
β-catenin-independent pathways can be initiated by
Wnt/FZD complexes [20]. They can increase concentra-
tion of intracellular calcium ions and regulate the cyto-
skeleton and ultimately – cell polarity and motility. They
can also antagonize the β-catenin-dependent signaling in
certain contexts [21]. Apart from heterotrimeric G pro-
teins and Dvl, no other components of the β-catenin-
dependent pathway are involved in “non-canonical” sig-
naling. Our review will only episodically touch upon
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Figure 1 Schematic representation of the Wnt/β-catenin signaling pathway and the oncology-indication drug candidates discussed in
the paper. The molecular targets (where known) of the small molecule and antibody-based drug candidates are shown.
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these types of Wnt signaling, mostly concentrating on
the Wnt/β-catenin pro-proliferative branch.
The Wnt/β-catenin signaling is repeatedly used during

animal development. Given this important developmen-
tal function, the role of this pathway in regulation of
stem cell proliferation and differentiation, which emerges
as a unifying function of this pathway in the adult, both in
the physiological and pathological contexts, is not surpris-
ing. Initially Wnt/β-catenin signaling has been shown
to be crucial for the maintenance and self-renewal of
hematopoietic cells [22]. This discovery was corroborated
by subsequent findings of the necessity of this pathway for
proliferation of neuronal [23], embryonic [24], mammary
[25], intestinal [26] and other types of stem cells. Finally,
the role of Wnt/β-catenin signaling in cancer stem cells
(CSCs) has also emerged [27]. These discoveries form the
basis for the translational efforts of targeting (suppressing
or activating) the Wnt/β-catenin signaling in anti-cancer
and regeneration therapies, discussed below.

Review
Development of anti-cancer drugs targeting the
Wnt/β-catenin pathway
The Wnt/β-catenin signaling pathway as a target of anti-
cancer drugs has attracted attention of biotech companies
relatively recently. This field received a special attention
when it became clear that this signaling plays a major role
in CSC proliferation. CSCs have been implicated in tumor
maintenance and relapse after surgical resection. The CSC
pool is self-renewing and this process is largely driven by
re-activation of embryonic programs mediated by Wnt,
Hedgehog and Notch signaling pathways and the mTOR
signaling hub [27,28].
A large number of preclinical experiments demon-

strated that inhibition of Wnt/β-catenin signaling can
affect cancer cell growth and survival (for review see
[29]). While mutations in the Wnt/β-catenin pathway
are responsible for certain types of cancers, most notably
APC mutations in colorectal cancer [30], many cancers
driven by overstimulation of this signaling do not harbor
mutations in its components. For example, the study of
245 invasive breast carcinomas has identified a subgroup
with triple-negative phenotype (ER-, PgR-, HER2-) where
β-catenin was accumulated in the nucleus, which is a hall-
mark of Wnt/β-catenin pathway activity. However, no
β-catenin mutation has been found in all triple-negative
carcinomas analyzed [31]. Therefore constitutive receptor
stimulation can account for hyperactive Wnt signaling in
the absence of activating mutations in the components of
the pathway.
Most current anti-cancer drugs, small molecule inhibi-

tors and monoclonal antibodies (mAbs), are designed to
target rapidly proliferating cells which represent com-
mitted cancer cells but not CSCs. Sorafenib, a small
molecule inhibitor of multiple tyrosine kinases involved
in tumor proliferation, is used in the treatment of acute
myeloid leukemia (AML). There it is supposed to inhibit
FMS-like kinase overexpressed in almost all cases of
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AML. As has been recently demonstrated, sorafenib ef-
fectively reduces the number of mature AML progeni-
tors but fails to eradicate AML stem cells and primitive
progenitors [32]. Trastuzumab is an example of a mAb.
It targets the HER2 receptor overexpressed in one quarter
of breast cancers. Trastuzumab monotherapy has only a
30% response rate and acquired resistance to trastuzumab
occurs frequently. Trastuzumab has been shown to be ef-
fective only in the context of PI3K signaling and in the
presence of PTEN, but CSCs display the aberrant former
and the absence of latter [33]. Since current cancer ther-
apies fail to eradicate CSCs, selective targeting of CSCs
would be a promising therapeutic strategy.

Small molecules targeting the Wnt/β-catenin pathway
Significant efforts are made world-wide to develop potent
inhibitors of the Wnt/β-catenin signaling, but only few
of these have made it to reach clinical trials. Small-
molecule inhibitors identified in a number of high-
throughput screens can be classified into four groups:
β-catenin/TCF-antagonists, modulators of transcription
co-activator, Dvl binders, and other mechanism-based
inhibitors [34] (Figure 1 and Table 1).
Among small molecules the leading class is the Porcu-

pine inhibitors, as exemplified by LGK974 (Novartis) [35].
Porcupine is a membrane-bound O-acetyltransferase re-
quired for acylation of Wnt molecules, and inhibition of
this enzyme results in reduced or abolished Wnt secretion
[36]. LGK974 is now in clinical Phase I for the following
conditions: melanoma, breast cancer (triple-negative),
pancreatic adenocarcinoma, colorectal cancer, head and
neck cancers. Additionally patients with other tumor
types with documented genetic alterations upstream in
the Wnt/β-catenin signaling pathway are being recruited
(www.clinicaltrials.gov).
Another class of compounds inhibits tankyrases (TNK1

and 2) – enzymes among other functions found to
destabilize Axin. TNK inhibition results in prevention of
β-catenin accumulation. Examples are XAV939 from
Novartis [37] and G007-LK from Roche [38]. The active
development of TNK inhibitors is pursued for two
Table 1 Current status of clinical trials of biologics specifically

Name/company Target Agent

OTSA101 (Centre Léon
Bérard, OncoTherapy Science)

FZD10 mAb

OMP-54F28 (Oncomed Pharma) Wnt Fzd8-Fc
(scavenging rece

Vantictumab (Oncomed
Pharma)

FZD1, 2, 5, 7, 8 mAb

Foxy-5 (WntResearch AB) FZD5 Peptide
reasons: first, Axin is the rate-limiting component of the
β-catenin destruction complex [39]; second, Axin muta-
tions and increased β-catenin levels are associated with
various types of cancer [40]. In cancers with mutated
Axin or APC, the upstream antagonists acting on Wnts
or their receptors may be less effective. However, the
full potential of the antitumor activity of TNK inhibitors
may be limited by intestinal toxicity associated with in-
hibition of Wnt/β-catenin signaling and cell prolifera-
tion in intestinal crypts [38].
During activation of β-catenin-dependent gene tran-

scription, the complex of β-catenin and LEF/TCF recruits
additional factors for chromatin remodeling, like CBP and
p300, which possess the histone acetyltransferase activity.
Association of β-catenin with histone acetylases can be
antagonized by several compounds. One of them, PRI-724
(Prism Pharma) has reached clinical trials in AML and ad-
vanced solid tumors. It is a small molecule that selectively
inhibits the histone deacetylase CBP/β-catenin complex,
blocking expression of the Wnt/β-catenin pathway-
dependent pro-growth and pro-survival genes. PRI-724
exhibits a selective antiproliferative effect, inhibiting vari-
ous cancer cell lines in vitro and substantially inhibiting
tumor growth in animal studies (http://clinicaltrials.gov/
show/NCT01302405).
Already approved drugs with well-established safety

profile find a far easier way to clinical trials for a differ-
ent indication. Niclosamide is an anti-helminthic drug
used in humans for nearly 50 years. In 2009, it emerged
as a compound that inhibits Wnt3a-stimulated β-catenin
stabilization and TCF/LEF reporter activity in osteosar-
coma cell line. This was a result of screening of an FDA-
approved drug library for compounds that would promote
endocytosis of FZD1 [41]. In vitro, niclosamide treatment
reduced the levels of LRP6 and β-catenin, and in vivo it
had a suppressive effect on basal breast cancer xenografts
[42,43]. Despite these observations, niclosamide is not
ready yet for clinical trials for oncology indications. As an
approved drug it is given orally and is only partially
absorbed from the gastrointestinal tract, therefore novel
derivatives are needed to improve the bioavailability of
targeting the Wnt/β-catenin pathway (ligands or receptors)

Conditions Clinical
phase

Synovial sarcoma. Antibody-radionuclide
conjugate (90Y)

I

ptor)
HCC, liver cancer, ovarian cancer, pancreatic
cancer, other solid tumors

I

Solid tumors (completed), NSCLC, metastatic
breast cancer, pancreatic cancer, (active, as a
combination with chemiotherapy)

I

Metastatic breast cancer, colorectal cancer,
prostate cancer

I

http://www.clinicaltrials.gov
http://clinicaltrials.gov/show/NCT01302405
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niclosamide. The alternative intravenous route of niclosa-
mide administration requires comprehensive investigation
regarding the safety and the possibility of systemic appli-
cation [43]. Other potential anti-Wnt drug candidates
emerge from screening of FDA-approved compounds; the
anti-leprosy drug clofazimine has recently been discovered
as a potent inhibitor of Wnt/β-catenin signaling and
proliferation of Wnt-dependent triple negative breast
cancer cells [44].

Wnts as targets
Although there has been a number of reports where
Wnt proteins were targeted directly by antibodies (see
for example [45,46]), none of the anti-Wnt mAbs is cur-
rently visible even in the pre-clinical pipelines of pharma
companies. Another way to neutralize Wnt ligands is
chosen by the company OncoMed Pharmaceuticals. Its
candidate biologic OMP-54F28 is a fusion between the
Wnt-binding CRD domain of FZD8 and the Fc-fragment
of IgG. OMP-54F28 works as a scavenger for Wnt pro-
teins (apparently several of the family) preventing them
from binding to endogenous membrane-bound FZDs [47].
Surprisingly, despite pronounced reduction of xenograft
tumor growth in mice, OMP-54F28 treatment did not vis-
ibly change the levels or cellular localization of β-catenin
in xenograft tissues. This suggests that although changes
in β-catenin may have been too small to detect by immu-
nohistochemistry, the attenuation of Wnt/β-catenin sig-
naling was sufficient to inhibit the tumor growth. More
importantly, this study has shown no adverse effects in
the skin and intestine (http://www.oncomed.com/Pipeline.
html) (but see section “Safety of Wnt pathway targeting”
below).

FZDs as targets
The FZD family of GPCRs provides a large and practic-
ally untapped source of potential targets for therapeutic
interventions [48]. A number of pharma companies are
searching for novel GPCR-interacting molecules. The
most high-throughput approach is the screening of small
molecule chemical libraries to identify candidate thera-
peutics. Yet, in the past decade the number of small mole-
cules targeting GPCRs that were approved as therapeutics
has been very low. The high attrition rate in preclinical
and clinical studies, credited to toxicity, low efficacy or
selectivity puts an enormous burden on drug discovery
budgets. In contrast to that, protein biologics, such as
monoclonal antibodies (mAbs), have several advantages as
therapeutics. They are highly selective and have much lon-
ger half-lives than small molecules [49,50].
Peptide fragments of Wnt ligands, binding to the CRD

domain of FZD receptors, have been proposed as poten-
tial therapeutic agents. Indeed, in vitro experiments indi-
cate that these peptides can compete with full-length
Wnts and attenuate canonical signaling. However one
can doubt their value even in animal model preclinical
studies, since the rapid clearance of non-modified peptides
would prevent any lasting effect on cancer cells. Such an-
tagonist mimetics of Wnts would need to be modified, for
example by PEGylation or formylation, to effectively in-
crease their half-life, before considering them as thera-
peutic candidates. A hexapeptide Box5, derived from
Wnt5a and stabilized by the N-butyloxycarbonyl group,
has been developed to antagonize Wnt5a-stimulated me-
tastasis in melanoma [51]. In contrast to its activity in
melanoma, Wnt5a shows tumor-suppressing activity in
the breast, and restoring this protein can suppress mi-
gration of breast cancer cells – activity recapitulated by
a formylated hexapeptide Foxy-5 also derived from
Wnt5a [52,53]; this drug candidate is currently in phase
I clinical trials.
FZD10 has a very restricted expression pattern; it is un-

detectable in normal human tissues except placenta, but
up-regulated in synovial sarcomas. Taking this oppor-
tunity, OncoTherapy Science has developed a chimeric
humanized mAb against FZD10, named OTSA101. Non-
radiolabeled OTSA101 antibody has only weak antagonis-
tic activity on synovial sarcoma cell growth. However,
Yttrium 90-radiolabeled OTSA101 (OTSA101-DTPA-90Y)
showed significant antitumor activity following a single
intravenous injection in mouse xenograft model [54] and
is now in Phase I clinical studies.
FZD7 is the Wnt receptor most commonly up-regulated

in a variety of cancers including colorectal cancer, hepato-
cellular carcinoma (HCC) and triple negative breast can-
cer [55]. It has been demonstrated that siRNA (small
interfering RNA) knockdown of FZD7 displayed anti-
cancer activity in vitro and in vivo due to the inhibition of
the canonical Wnt signaling pathway [56]. While siRNA
approach remains to be problematic in clinic for a number
of reasons, anti-FZD mAb named vantictumab is one of
the lead protein biologics in the Oncomed Pharmaceuti-
cals pipeline for oncology indications. This antibody was
initially identified by binding to FZD7’ CRD domain and
ability to inhibit Wnt3a-induced signaling in a cell-based
assay. In addition to FZD7, vantictumab also binds to four
other FZD receptors (out of ten encoded by the human
genome) – restricting its selectivity (see below). In mouse
xenograft models of several types of solid tumors (among
them pancreatic, colon cancers, and triple-negative breast
cancer), vantictumab as a monotherapy demonstrated just
a decrease in the tumor growth rate. On the other hand,
combined treatment with cytotoxic chemotherapy pro-
duced in some tumor types not only a dramatic tumor
shrinkage but also tumor cell differentiation and reduction
of CSC numbers [57]. The interim data of vantictumab
clinical trials (Phase I) have been reported in 2013–2014
at various conferences (a collection of posters can be

http://www.oncomed.com/Pipeline.html
http://www.oncomed.com/Pipeline.html
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found at Oncomed Pharmaceuticals’ website). Vantictu-
mab has clear pharmacodynamics effects on expression of
stem cell and differentiation genes in the tumor, as well as
in hair follicles and bones. The initial enthusiasm however
has recently diminished when clinical trials were put on
hold (see section “Safety of Wnt pathway targeting” below).
Secreted Frizzled-related proteins (sFRPs) have also

been in focus as targets for cancer therapy. There are
conflicting reports in the literature as to whether sFRPs
are antagonists or agonists of Wnt/β-catenin signaling
[58-60]. For example, sFRP2 is over-expressed in human
angiosarcoma and breast cancer and stimulates angiogen-
esis via activation of the calcineurin/NFATc3 pathway.
Recently, sFRP2 has been assessed as a viable therapeutic
target [61]. sFRP2 mAb has been shown to induce anti-
tumor and anti-angiogenic effects in vitro and inhibit acti-
vation of β-catenin and nuclear factor of activated T-cells
c3 (NFATc3) in endothelial and tumor cells. sFRP2 mAb
treatment of angiosarcoma allografts or MDA-MB-231
breast carcinoma xenografts in nude mice significantly
reduced tumors volume. Given that this mAb preferen-
tially accumulates in sFRP2-positive tumors and is long
circulating in the blood, it may be a good candidate for
clinical studies.
Even more perspective would be an approach combin-

ing two or more targeted therapies. In this respect a recent
study by Birchmeier and colleagues [62] is of a particular
interest. The authors have generated a compound mutant
mouse model of aggressive basal breast cancer, combining
the activation of β-catenin and HGF (Wnt-Met signaling).
They identified the chemokine system CXCL12/CXCR4
as a crucial driver of these tumors. Molecular therapy tar-
geting Wnt, Met and CXCR4 significantly delayed tumor
development in mice. Moreover, the gene signature identi-
fied in these model tumors was found to be predictive of
poor survival in human patients with ER-negative breast
cancers. Although the small molecule inhibitors used in
this study are only prototypes of the possible future
drugs, the outlook is promising. In such a combination
therapy, inhibition of the Wnt/β-catenin pathway would
stop self-renewal program of CSCs, while suppressing
CXCR4 signaling would lead to differentiation of cancer
propagating cells.

Regeneration
The Wnt/β-catenin pathway is known to be essential for
stem cell proliferation. While life-threatening in the con-
text of CSCs, this fact underlies the importance of the
pathway in regenerative processes in many tissues, such
as the liver, brain, muscle, skin and bone. This makes Wnt
pathway agonists desirable candidates for regeneration-
enhancing therapies, and some have already shown their
regenerative effects. We will review the role of different
branches of the Wnt pathway (but mostly Wnt/β-catenin)
separately for different organs and tissues, paying special
attention to the therapeutic potential and successful
practical applications of activators of the Wnt signaling
(Figure 2 and Table 2).

Liver
The Wnt/β-catenin signaling is known to be involved in
liver organogenesis during embryonic development [63]
and is active at all stages of the organogenesis, activating
cell proliferation through c-Myc and cycD1 and regulating
hepatocyte differentiation via an interplay with HNF4,
C/EBPa, BMP4, and some other pathways [64,65].
In the normal adult liver the Wnt/β-catenin pathway is

generally inactive, and β-catenin undergoes phosphoryl-
ation and subsequent degradation [66]. Nevertheless, re-
activation of the pathway has been shown as one of the
driving forces essential for liver regeneration, in terms of
liver stem cells proliferation and differentiation [67].
In the liver, the role of stem cells is known to be played

by adult hepatic progenitor cells also known as oval cells
[68]. The oval cells have been shown to participate in re-
generation and in a range of human liver diseases, such as
HCC. The nature of liver oval cells is bi-potential as they
have been shown to differentiate toward both the hepatic
and bile ductular epithelial lineages in the liver [69]. It has
been demonstrated that active Wnt/β-catenin signaling in
the liver occurs preferentially within the oval cell popula-
tion, and forced over-expression of a constitutively active
β-catenin mutant drives expansion of the oval cell popula-
tion in the regenerating liver [70]. The dual role of the
Wnt/β-catenin pathway in regulating the fate of the oval
stem cells has been shown by demonstration that Wnt1
can induce their differentiation to hepatocytes in a rat
liver regeneration model [71]. This example indicates the
tissue-specific importance of certain Wnt ligands as candi-
dates for the use in regenerative medicine.
The importance of Wnt/β-catenin signaling for the

liver regeneration has been shown in a series of other
observations focusing on different levels of regulation of
the Wnt cascade. For example, it has been demonstrated
that Wnt-dependent regeneration in the liver can be con-
trolled by an endogenous long non-coding RNA, which
activates Wnt/β-catenin signaling by inhibiting expression
of Axin. This action of the non-coding RNA leads to en-
hanced hepatocyte proliferation during liver regeneration
[72], showing the potential for the therapeutic use of Wnt
pathway-related non-coding regulatory RNAs in the treat-
ment of liver diseases.
Several examples demonstrating the interplay of the

Wnt/β-catenin pathway with other signaling cascades
during liver regeneration have recently been described.
The TGFβ family-related protein SMAD6 is able to sup-
press the Wnt/β-catenin signaling in the liver acting at the
β-catenin-TCF-promoter interaction; down-regulation of



Figure 2 Schematic representation of the Wnt/β-catenin signaling pathway and the regeneration therapy drug candidates discussed in
the paper. The molecular targets (where known) of the small molecule and antibody-based drug candidates are shown.
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SMAD6 leads to increased Wnt-dependent proliferation
and self-renewal of the hepatic progenitor cells [73]. The
Wnt/β-catenin pathway also interacts with Hedgehog
signaling in the liver, being able to stimulate expression
of the transcription factor Gli1 which is a downstream
effector of the Hedgehog pathway. Gli1 on its turn
up-regulates cycD1 causing enhanced hepatocyte prolif-
eration [74].
Given the importance of Wnt/β-catenin signaling for

hepatocyte proliferation and differentiation, therapeutic
intervention in the Wnt signaling pathway appears as a
promising tool for liver regeneration. The first successful
attempts have been already made. Liver cells expressing
Lgr5, a marker of actively dividing stem cells in Wnt-
driven self-renewing tissues, are able to clonally expand
in vitro from single cells and form transplantable “orga-
noids”, retaining many characteristics of the original
epithelial architecture, under the influence of a Wnt syn-
ergist R-spondin1 which acts as a Dkk1 competitor [75].
Table 2 Current status of regeneration-related clinical trials o
Wnt/β-catenin pathway

Name/company Target Agent

Wnt3a (China Medical University Hospital) FZDs Native Wnt3a

AMG785 (Amgen) Sclerostin mAb

Valproic acid (Seoul National University
Hospital)

GSK-3β Valproic acid

AMG 162 (Amgen) Dkk1 mAb

HSC (Histogen) multiple Wnt7a-containi
Such approaches are paving the way to future de novo
growth of transplantable organs.
A therapeutic effect of a small molecule Wnt/β-

catenin pathway agonist, 2-amino-4-(3,4- (methylenedioxy)
benzylamino)-6-(3-methoxyphenyl)pyrimidine (2-AMBMP),
has been demonstrated in the hepatic ischemia model in
rats. The drug blunted the ischemia-induced elevation
of aspartate aminotransferase and alanine aminotransfer-
ase levels, increasing cell proliferation rate and decreasing
negative effects such as inflammation and apoptosis, and
reduced the death rate in general [76]. As small molecules
are often a cheap and convenient substitution for natural
effector proteins, such the therapeutic approach represents
a promising strategy for the liver regeneration therapy.

Bone
Wnt signaling is known to be a key regulator of bone
tissue growth in embryos and in the adult [77]. It is es-
sential for osteocyte formation from stem cells [78] and
f biologics and small molecules targeting the

Conditions Clinical phase

Primary Disease recruiting

Bone Fracture Healing, Osteoporosis II

Androgenetic Alopecia II

Male Pattern Baldness

Osteoporosis II

ng complex Androgenetic Alopecia II
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for bone regeneration after injury or disease [77]. En-
hanced Wnt/β-catenin signaling increases bone volume
and causes hyperostosis and pathological bone thicken-
ing (sclerosing bone dysplasia) [79-82]. Such effects are
achieved by stimulating the bone-forming osteoblast
activity [83,84], by inhibiting the bone disassembling
osteoclast function [85,86], and by differentiation of di-
verse pluripotent stem cells toward osteoblasts [87-89].
It has been reported that a number of components of
the Wnt/β-catenin pathway, such as the ligands Wnt4,
Wnt5a, Wnt10b, Wnt11, and Wnt13, the receptors
FZD1, 2, 4 and 5, the co-receptors LRP5 and LRP6, β-
catenin, and the Wnt target genes, such as the osteoblast
differentiation-associated transcription factor Runx2, are
up-regulated in the fracture calyx during bone regener-
ation [90-94]. It needs be highlighted that not only β-
catenin-dependent Wnt signaling takes part in the bone
tissue growth, but other branches of the pathway control
it as well. It has recently been shown that β-catenin-
independent signaling through Wnt5a-FZD9 is signifi-
cantly up-regulated during the early stages of osteoblast
differentiation [95] and is reactivated in the regenerat-
ing bone, being essential for the fracture healing in a
femur osteotomy model in Fzd9

−/− mice [96]. The β-
catenin-independent Wnt5a signaling has been reported
to efficiently promote trans-differentiaon of adipopro-
genitors into osteoblasts in culture by suppressing per-
oxisome proliferator-activated receptor (PPAR)-γ, a key
adipogenesis-stimulating transcription factor, and by
activating Runx2 [97]. Wnt5a+/− mice demonstrate de-
creased trabecular bone mass in the femurs, and mice
homozygous for the loss-of-function mutation in Wnt5a
show truncation of the proximal skeleton and lacking of
distal digits [98]. The β-catenin-independent Wnt5a sig-
naling has been also shown to inhibit apoptosis of differ-
entiated osteoblasts and their progenitors, comparable to
the anti-apoptotic effects of signaling by Wnt3a and Wnt1
involving β-catenin [99].
Taken together, these data suggest that Wnt signaling

modulators could be used as therapeutic agents to stimu-
late bone formation after injury or disease. Currently two
strategies are exploited to find an effective Wnt-based
bone regenerative therapy. The first involves reduction of
the action of native Wnt signaling inhibitors endogenously
present in the organism, which in turn would enhance the
intrinsic Wnt activity. In this regard, activation of Wnt
signaling by neutralizing antibodies against the Wnt in-
hibitors Dkk1 [100] and sclerostin [101-104] has been
shown to improve bone healing in mice. sFRP1 is also a
Wnt inhibitor and a promising target for bone regener-
ation therapy [105].
Another way to promote Wnt signaling in order to

boost the bone tissue growth is a direct use of exogen-
ous Wnts or other pathway agonists. Although native
Wnt proteins are hard to use due to their low solubility, a
successful attempt has been recently made with liposome-
loaded Wnt3a, which upon application to the injury site
has caused a ca. 3.5-fold increase in the bone regeneration
rate in mice [106]. A clinical trial, sponsored by the China
Medical University Hospital (Taiwan), is being initiated to
study the osteogenic effects of human mesenchymal stem
cells enhanced by Wnt3a charged on hydroxyapatite nano-
particles (http://clinicaltrials.gov/show/NCT01323894).
Stimulation of murine bone regeneration has been also

obtained by application of LiCl [92], and similar effects on
rat bone regeneration have been observed using Li2CO3

[107]. Li+ is a well-known inhibitor of GSK3β – a key en-
zyme targeting β-catenin for proteosomal degradation –
and thus activator of the Wnt pathway; however, it is less
specific than Wnt proteins or other pathway agonists and
therefore may cause more side effects. In general it can be
stated that Wnt signaling in the bone tissue is well stud-
ied, leading to a big variety of possible artificial modula-
tions of the pathway to improve bone healing and to treat
bone diseases.

Skeletal muscle
The role of Wnt/β-catenin signaling in the skeletal muscle
remains controversial. In the adult, the β-catenin-
dependent Wnt pathway has been suggested to control
myogenic lineage progression by limiting Notch signal-
ing and thus promoting differentiation [108,109], in par-
ticular through Myf5 and MyoD growth factors [110].
Other data demonstrate that Wnt/β-catenin signaling in
the adult tissue, e.g. through Wnt1 and Wnt3a, pro-
motes only slow myofiber types generation and inhibits
myogenesis in general [111]. But the role of Wnt proteins
in regenerative processes in the skeletal muscle differs
from that in most other tissues, due to increased signifi-
cance of the β-catenin-independent Wnt activity. It has
been shown that Wnt7a, signaling through its receptor
FZD7, is capable of activation of distinct pathways at dif-
ferent stages of myogenesis. First, the Wnt7a-FZD7 inter-
action leads to activation of the Wnt-PCP (planar cell
polarity) pathway which is responsible for symmetric
expansion of satellite cells in the muscle tissue [112] – a
small sub-population of muscle cells that are capable of
self-renewal and act as muscle stem cells during regener-
ation [113]. Over-expression of Wnt7a enhances muscle
regeneration by means of increasing the satellite cell num-
ber, whereas muscles with down-regulated Wnt7a exhibit
a significant decrease in satellite cell numbers, impairing
the regeneration capacity. At this level of action, Wnt7a
does not affect the growth or differentiation of myoblasts.
Next, stimulation of FZD7 by Wnt7a in differentiated myo-
fibers directly activates the Akt/mTOR growth pathway
through Gαs and PI3K, thereby inducing myofiber hyper-
trophy [114]. Thus Wnt7a serves as a muscle growth-

http://clinicaltrials.gov/show/NCT01323894
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promoting factor at two levels, and at both it acts inde-
pendently from β-catenin. Recently a third level of Wnt7a
activity in regenerating muscles has been described, where
the Wnt7a/FZD7 interactions have been shown to in-
crease the polarity and directional migration of murine
and human myogenic progenitors through activation of
Dvl2 and the small GTPase Rac1, resulting in improved
muscle strength [115].
Taken together, these findings identify Wnt7a as an

important drug candidate against muscle wasting dis-
eases like sarcopenia, cachexia or muscular dystrophies,
and for improvement of stem cell-based muscle regenera-
tive therapy. Therapeutic potential of Wnt7a has indeed
been tested in several systems, like the mouse model of
Duchenne muscular dystrophy, where the Wnt7a treat-
ment stimulated satellite cell expansion and myofiber
hypertrophy and even led to a significant increase in
muscle strength. Furthermore, Wnt7a decreased the level
of contractile damage, most likely by inducing a shift in
the fiber type toward the slow-twitch [114]. In other ex-
periments a short treatment with Wnt7a notably increased
muscle tissue dispersal and engraftment, significantly im-
proving the muscle function [115].
Interestingly, a truncated Wnt7a variant consisting of

only 137 C-terminal amino acids and devoid of the con-
served palmitoylation sites has recently been shown to
preserve the full biological activity of the native protein
in skeletal muscles [116]. It retained the capability of inter-
action with its receptor FZD7 and stimulation of symmet-
ric expansion of satellite stem cells through the PCP
pathway, as well as induction of myofiber hypertrophy
by signaling through the AKT/mTOR pathway [116].
This finding is of a special importance for the Wnt7a-
based muscle therapy, because natural, palmitoylated
Wnt proteins are hard to use in medical and biotechno-
logical applications due to their large size, low product-
ivity and poor solubility. Evidence that truncated Wnts
may in some cases retain the therapeutic potential may
be a first step to production of active Wnt-related pep-
tides, easily applicable to muscle disease treatment.
Skin and hair follicles
In the skin, β-catenin-dependent Wnt signaling is one of
the dominant pathways regulating the patterning and
determining the fate of embryonic and adult stem cells
during their differentiation, as well as subsequently con-
trolling the function of differentiated skin cells [117]. An
important element of the skin are hair follicles, whose mor-
phogenesis also depends on Wnt, along with Shh, Notch,
BMP and other signaling pathways interacting with each
other. The Wnt/β-catenin pathway is a key player during
hair follicle induction, acting through the EDA/EDAR/NF-
κB signaling [118].
There is evidence pointing out an involvement of Wnt
signaling in the skin repair and hair follicle regeneration.
For example, a Wnt synergist R-spondin2 promotes cell
proliferation in the adult epidermis [119] which is directly
linked to the skin wound healing rate. Wnts also act as
niche signals for skin stem cells located in the bulge region
of the hair follicles [120,121]. Although the effects of Wnt/
β-catenin signaling were previously regarded to be opposite
on the epidermal and the hair follicle stem cells [122], it
has recently been shown that β-catenin-dependent signal-
ing actually promotes proliferation of these both stem cell
populations, thus being a driving force for regeneration of
both the skin and hairs [117,123]. Interfollicular epidermal
stem cells have been shown to express the Wnt target gene
Axin2 and to require Wnt/β-catenin signaling for prolif-
eration, producing autocrine Wnts as well as long-range
secreted Wnt inhibitors, thus suggesting an autocrine
mechanism of stem cell self-renewal in the epidermis.
These cells are able to promote skin wound healing,
with no demand for a quiescent stem cell subpopulation
[117]. In another work, experiments on β-catenin dele-
tion and LRP5/6 inhibitor Dkk1 over-expression have
indicated a necessity of Wnt/β-catenin signaling for fol-
licular stem cell proliferation; the same work confirms the
data on the Wnt-dependent renewal of the inter-follicular
epidermis [123]. Activation of β-catenin specifically within
murine hair follicle stem cells has been found sufficient to
induce hair growth independently of mesenchymal dermal
papilla niche signals normally required for the hair regen-
eration [124].
Artificial up-regulation of Wnt/β-catenin signaling in

regenerating hair follicles through adenoviral infection
of mice with Wnt10b has led to an increase in the size
of regenerating follicles and to excessive proliferation of
follicle cells. The observed effects were reduced when
the mice were co-infected with Dkk1 and Wnt10b [125].
These findings suggest that ectopic Wnt10b and Dkk1 can
be used to modulate the follicle size and proliferation dur-
ing hair regeneration.
Another example of effective use of external Wnt

treatment to improve the skin wound healing rate is the
injection of Wnt3a-carrying liposomes into the skin of
injured mouse ears. The liposomal Wnt3a has demon-
strated the ability to enhance Wnt signaling in the dam-
aged tissue and to dramatically improve the wound healing
rate [126]. Hair growth (seen as hair follicle progression
from telogen to anagen and by overall up-regulation of hair
induction-related genes) could also be enhanced in mice
upon treatment with Wnt1-conditioned media [127].
Interestingly, there are clinical data showing that ec-
topic application of Wnt7a as a component of a growth
factor cocktail enhances hair growth, possibly suggest-
ing that Wnt7a could act in a β-catenin-dependent way
in this case [128].
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Finally, more robust ways to up-regulate Wnt/β-catenin
signaling have been successfully applied to skin and hair
regeneration. Valproic acid, an inhibitior of GSK3β, has
shown its efficacy in boosting the cutaneous wound repair
in mice [129] as well as promoting hair growth in cell
culture [130] and inducing hair regeneration in murine
systems [131] and in clinical trials [132]. Along with the
bone, the skin and hair regeneration is the field where the
Wnt-based therapy is well advanced, as compared to other
organs and tissues.

Neuroprotection and Alzheimer’s disease
Wnt signaling is actively involved in neurogenesis and
modulation of the synaptic function in the adult [133].
Further, association of the Aβ-peptides and Alzheimer’s
disease etiology in general with the Wnt signaling-induced
processes has been reported many times [134,135]. The
Aβ-peptides have been shown to directly inhibit the Wnt/
β-catenin cascade by interacting with FZDs and impairing
the normal activation of the pathway [136]. Such impair-
ment can in turn lead to synaptic degeneration. On the
other hand, addition of exogenous Wnt3a or LiCl activat-
ing the Wnt/β-catenin pathway has been shown to pre-
vent the Aβ-peptide-mediated synaptic degeneration and
cell death in a neuronal cell culture [137]. It has also been
shown that neuroprotective effects of Wnt3a are mediated
by the receptor FZD1 [138]. Recent studies confirm the
importance of the Wnt/β-catenin signaling as an anti-
Alzheimer acting force, as activation of the cascade
using Bromoindirubin-30-Oxime (6-BIO), an inhibitor
of GSK3β, protects hippocampal neurons from Aβ-
oligomers and reduces the rate of neuronal apoptosis
[139]. Moreover, the same study suggests that the β-
catenin-independent Wnt5a-mediated Ca2+-dependent
signaling could modulate mitochondrial dynamics and
prevent the changes induced by the Aβ-peptide oligo-
mers in mitochondrial fission and fusion usually present
in neurodegenerative diseases [139].
Other small molecule Wnt/β-catenin signaling ago-

nists have also demonstrated an ability to increase adult
neurogenesis or inhibit the neurodegenerative effects of
the Aβ-peptides. Simvastatin has been shown to synergize
with Wnt/β-catenin signaling in vivo and in vitro, enhan-
cing it through depletion of isoprenoid synthesis (which is
involved in the regulation of membrane-located proteins
like small GTPases) and improving the rate of adult hippo-
campal neurogenesis, making it a potential neuroprotective
drug [140]. In a mouse model of Alzheimer’s, treatment
with LiCl reduced amyloid-induced memory impairment
and decreased Aβ-peptide aggregation. These effects were
paralleled by stabilization of β-catenin [141].
Another interesting example of small molecule agonists

of Wnt/β-catenin signaling able to act in the brain is cur-
cumin. Cucrumin-coated nanoparticles could activate the
Wnt/β-catenin pathway in rat brains and reverse learning
and memory dysfunctions in the Aβ-induced rat model of
the Alzheimer’s disease by stimulation of neurogenesis.
In silico molecular docking studies suggest the possible
mechanisms of curcumin action through interaction with
Wnt antagonists Wif-1, Dkk, and the β-catenin inhibitor
GSK3β [142]. These observations make the therapies
based upon the Wnt-cascade activation a promising way
to treat the Alzheimer’s disease and other neurodegen-
erative diseases.
However, in case of the brain tissue, over-activation of

Wnt pathways can also be counterproductive in thera-
peutic applications, as Wnts are known to stimulate
pro-inflammatory processes in microglia, thus complicat-
ing the Alzheimer’s disease treatment. An increase in
Wnt/β-catenin signaling has been observed in microglia
of mice with Alzheimer’s-like pathology; in cultured
microglia, treatment with Wnt3a activated the β-catenin-
dependent pathway and led to increased expression of pro-
inflammatory genes [143]. Experiments on the axon injury
model in mice have demonstrated that down-regulation
of β-catenin-dependent signaling by a tissue-specific gene
knockout in oligodendrocyte precursor cells facilitates
axonal regeneration in damaged tissue and reduces the
glial scarring [144]. Interestingly, β-catenin-independent
Wnt5a signaling is also implicated in microglial pro-
inflammatory transformation via the ERK1/2 pathway
[145]. Such controversial involvement of distinct Wnt
pathway branches in regeneration and inflammation of
the neural tissue will require a more detailed study of
the interplay of different signaling pathways and a very
accurate application of Wnt signaling activators in case
of future therapeutic Alzheimer’s disease treatment.

Discussion on regeneration
Generally, the regeneration processes in most tissues are
regulated by re-activating the Wnt/β-catenin signaling,
which leads to stem cell proliferation and/or differenti-
ation, although in some cases β-catenin-independent
Wnts take on the leading role, as it is the case with the
skeletal muscle. In spite of a complex interplay of Wnt sig-
naling with other signaling cascades, straightforward ap-
proaches like ectopic treatment of the injured organs or
tissues with Wnt agonists have shown their effectiveness
in different tissues, improving the regeneration rate. Com-
bining these findings with possibilities to further enhance
therapeutic potential of Wnts through viral or liposomal
delivery or by engineering of small Wnt-related peptides
allows us to look optimistically towards the direct use
of Wnt cascade agonists in regenerative medicine. In
addition to application of the truncated Wnt7a in the
muscle, short peptide analogs of Wnt5a or their more
stable formylated derivatives have shown to mimic the
biological activity of the native Wnt5a protein by
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blocking cell migration in breast epithelium [52,53].
Structure-assisted design [44,146] and directed protein
evolution approaches [147] can help in generation of
novel Wnt-derived pro-regenerative agents. Other ap-
proaches are the indirect methods to enhance intrinsic
Wnt activity in the injured or diseased tissue and have also
proven their applicability. For example, down-regulation
of the natural Wnt inhibitors has been shown to work well
in aiding the bone repair. Several regenerative therapeutic
approaches targeting the Wnt/β-catenin pathway in the
skin and the bone are already in clinical trials (Table 2).
Liver, brain, skin and bones are the well-studied organs

for Wnt/β-catenin regenerative applications, but they do
not limit the potential of possible targets for the Wnt-based
regeneration therapy. It is known that Wnt/β-catenin sig-
naling is also involved in angiogenesis [148], indicating that
modulation of this pathway might be used as an instrument
to treat cardiovascular diseases including myocardial infarc-
tion [149] or target angiogenesis in tumors. Practical at-
tempts in this direction have already been made: recent
studies indicate that UM206, a small peptide homolog of
Wnt3a/Wnt5a capable of blocking FZD signaling, can im-
prove heart tissue regeneration after infarction [150].
Approaches for the future regenerative medicine do

not stop just at the increasing of the natural regeneration
rate. A highly desired goal is to develop technologies of
tissue engineering and of growth and transplantation of
artificial organs. Although no complete functional organs
ready for transplantation have been grown so far, first
efforts have already been made in this direction. Such
complex tasks would involve multiple steps and demand
compound cocktails of different growth factors, where
Wnt signaling activators are essential components in most
cases. A successful attempt to grow an optic cup (retinal
primordium) structure from a three-dimensional culture
of mouse embryonic stem cell aggregates has been per-
formed, which involved a treatment with Wnt/β-catenin
pathway agonists at certain steps [151]. As a conclusion, it
can be claimed that development and production of highly
active and tissue-specific agonists of the Wnt/β-catenin
signaling, either peptide-based or small-molecule analogs,
is a goal of high importance for regenerative medicine in
the next decades.

Safety of Wnt pathway targeting
As exemplified above, the Wnt pathways are involved
not only in many developmental processes but also in the
maintenance of adult tissue homeostasis. Thus a careful
safety assessment of drugs directly or non-directly target-
ing the Wnt signaling is required. It is clear that a general
inhibition of the Wnt/β-catenin pathway is potentially un-
safe, mainly because of: (i) broad Wnt/FZD expression
pattern; (ii) the role of the pathway in the maintenance of
the differentiated epithelium and its interaction with
mesenchymal cells; (iii) its involvement in stem cell
pluripotent state maintenance; (iv) its role in bone
homeostasis. A recent review [152] provides a very de-
tailed discussion of safety concerning targeting of the
Wnt pathways, both in regenerative medicine and on-
cology. Here we would like to provide only a few illus-
trations highlighting this safety issue – as well as the
issue of difficulty in predicting whether a certain Wnt-
targeting drug candidate would or would not have par-
ticular side effects.
The first example is about the FZD co-receptor antago-

nists. Blockade of Wnt/β-catenin signaling by adenovirus-
mediated expression of Dkk1 (a natural LRP5/6 antagonist)
in mice has been shown to suppress epithelium prolifera-
tion in small intestine and colon, accompanied by progres-
sive architectural degeneration with the loss of crypts, villi,
and glandular structure by 7 days [153]. Further, ectopic
Dkk1 expression led to a complete failure of hair follicule
formation in adult mice [154]. In contrast to that in vivo
administration of an LRP6 antagonist Mesd markedly sup-
pressed growth of MMTV-Wnt1 tumors without causing
undesirable side effects [155].
Another example concerns the potential of using Wnt

proteins as drugs. Indeed, some Wnts have tumor sup-
pressing activity. Wnt5a, for example, is often viewed as
a “non-canonical” Wnt capable of antagonizing the Wnt/β-
catenin signaling and has a role in limiting B-cell prolifera-
tion and functions as a tumor suppressor in hematopoietic
tissue [156]. Mice hemizygous for Wnt5a develop clonal
myeloid leukemias and B cell lymphomas and display loss
of Wnt5a function in tumor tissues. On the other hand,
expression of Wnt3a (a prototypical activator of the Wnt/
β-catenin signaling and thus a presumed pro-oncogenic
factor) in mouse melanoma model decreased the prolifera-
tion of the tumor and suppressed the metastasis [157].
Therefore whether the application of a certain Wnt will be
anti- or pro-oncogenic may be highly context-depending.
In many cases, the side effects whose presence or ser-

iousness has been ruled out during pre-clinical studies
appear during clinical trials, despite all pre-cautionary
measures. For example, the enthusiasm initially shown for
both of Oncomed Pharmaceuticals’ Wnt pathway bio-
logics, vantictumab and OMP-54F28, diminished when
clinical trials for both were put on hold. The quoted rea-
sons for halting patient enrollment dosing are bone-
related side-effects ranging “from mild to moderate”
(http://www.reuters.com/article/2014/06/13/us-oncomed-
study-idUSKBN0EO1B920140613). These were observed
in 8 out of 63 (13%) patients treated with vantictumab and
in 2 out of 41 (5%) with OMP-54F28. Since the increase in
bone turnover has been stated as one of the vantictumab
pharmacodynamics effects, it is logical to assume that the
mentioned percentage of patients developed osteoporosis.
Lowering the dosage and frequency of the drugs might

http://www.reuters.com/article/2014/06/13/us-oncomed-study-idUSKBN0EO1B920140613
http://www.reuters.com/article/2014/06/13/us-oncomed-study-idUSKBN0EO1B920140613
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neutralize such side effects – but this could also have a
negative impact on the drug efficacy.
The root of the current problem with vantictumab in

particular may lie in the initial design of the drug
molecule. It binds to 5 out of 10 FZD family mem-
bers in vitro and potentially even more in vivo. How-
ever, not all of the FZDs that bind to vantictumab are
over-expressed or over-activated in the solid tumors
included in the clinical study. Conversely, only some
FZD members may be critical for bone remodeling. A
FZD mAb with less broad specificity could still have
been effective, inhibiting signaling originating from
pro-oncogenic FZDs (or just one FZD) while not af-
fecting the FZDs indispensable for osteogenesis. These
considerations highlight perhaps the most important
issue in targeting the Wnt pathways – safety is likely
to result from higher specificity in targeting a particular
sub-pathway implicated in a certain pathogenic condition,
rather than bluntly suppressing all or most of the sub-
pathways [158,159].

Conclusion
As discussed above, Wnt signaling plays important func-
tions in cancer progression and tissue regeneration. Iron-
ically, what is therapeutically good for one (activation of
the pathway in regeneration) is bad in for the other (anti-
cancer treatment). Thus, extreme care must be taken
when developing Wnt-stimulating pro-regenerative drugs,
to exclude the risks of cancer complications. This demand
appears not un-achievable through design of highly spe-
cific and/or local activators of the Wnt pathways. On
the other hand, the expected side effects in targeting the
Wnt/β-catenin pathway in anti-cancer treatments are
myelo- and gastrointestinal suppression, exactly due to
the adverse effects of anti-Wnt treatments on prolifera-
tion of hematopoetic and intestinal stem cells, as well as
progenitor cells in other organs. Here again, a hope is
for designing specific agents targeting the Wnt/FZD
sub-pathways activated in a given cancer, rather than
blocking the Wnt/β-catenin signaling altogether [159].
In this regard, attacking higher ‘floors’ of the signaling
hierarchy – i.e. the ligands and receptors – appears
especially promising [48,158]. It is important to remem-
ber that the Wnt pathways must be fine-tuned for the
normal physiology control. As recent works indicate
[47], even moderate attenuation of Wnt signaling can
eliminate its carcinogenic potential. Therefore it is pos-
sible to keep the “good” physiological level of Wnt sig-
naling by finding the right target and a right tool to act
on this target in a desired mode. Perhaps the fact that
Wnt signaling in tumor tissues is exacerbated relative to
normal tissue as well as a potential of normal tissue to
recover could provide the safe window of Wnt inhib-
ition in therapy.
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