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Abstract

Self-assembled porous alumina structures (por Al2O3) were prepared by two-
step anodization process and characterized by scanning electron microscopy.
Filling quasi one-dimensional parallel nanochannels of por Al2O3 host matrix
with iodine guest substance by vapor phase adsorption method resulted in
the formation of I/por Al2O3 nanocomposite. Electrical properties of these
nanocomposite samples were studied by alternating-current measurements at
a frequency of 1 kHz. Ellipsometric measurements were carried out in the
spectral range 350–1000 nm. Structural transition of iodine species from the
chain structures to molecular iodine was found in I/por Al2O3 nanocomposite
at ∼ 70 ◦C.
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1 Introduction

In the last decades I/AFI composites prepared by infiltration of the quasi one-
dimensional nanochannels ofAFI zeolite-like microporous aluminophosphate
host matrix [1] with iodine guest substance (semiconductor with p-type
conductivity) were thoroughly studied by polarized optical absorption and
Raman spectroscopy, thermal gravimetry and differential scanning calorime-
try [2–4] as well as by electrical methods [5]. Iodine species inserted
inside the AFI zeolite-like framework were proposed to be a prospective
candidate for iodine Raman laser design [4]. The most striking feature
of nanostructured iodine behavior in AFI channels with inner diameter
0.73 nm is probably the first-order phase transition from the chain struc-
tures to the molecular species at t0 ≈ 70 ◦C which was found first
by optical characterization and phase dynamics [2–4]. Our direct-current
electrical measurements [5] proved the occurrence of the iodine species
phase transition from chain structures to molecular iodine near 70 ◦C. We
have interpreted the pronounced peculiarity in the temperature dependence
of direct-current electrical conduction measured along the channels as the
result of semiconductor-to-insulator structural transition in iodine species
in AFI zeolite-like porous matrix (i.e., posistor effect in I/AFI composite
nanostructured material).

Porous anodic alumina (por Al2O3) with straight and parallel pores
could be considered a next candidate for quasi one-dimensional iodine chain
formation by matrix method. The structure of this material has been known
since the early 1900s; it was widely used to protect and to decorate the
aluminum surface or to make inorganic membranes.

In recent years porous anodic alumina has become a popular template sys-
tem for the synthesis of various nanostructures [6]. Many materials including
nanowires, nanotubes and nanodot arrays have been fabricated by deposition
of various metals, semiconductors, oxides and polymers inside the pores
of anodic alumina. In this work electrical and some optical properties of
I/por Al2O3 were studied.

In 1995 Masuda and Fukuda developed a two-step process to achieve a
uniform, closely packed honeycomb structure [7]. The method discovered by
Masuda et al. relies on self-ordering of pores at the bottom of porous alumina
channels after a long first-anodization step under appropriate conditions,
known as ‘self-ordering regimes’. The driving force for self-assembly has
been attributed to the repulsive forces between neighboring pores caused by
mechanical stress at the metal/oxide interface [8, 9]. Hexagonally arranged
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Figure 1 Schematic drawing of porous alumina.

arrays with straight and parallel pores can be obtained by this method
(Figure 1).

2 Experimental Procedures

Two-step anodization was done using experimental setup described in [10].
This process is illustrated in Figure 2.

Firstly, aluminum sheet of 0.5 mm thick was degreased in acetone and
mechanically polished.

Then anodization was performed at 40 V in 0.3 M oxalic acid at 8 ◦C
for 5 hours. After the first step of anodization the oxide layer was chemically
removed in mixture of 20 g/l CrO3 and 35 ml/l H3PO4 at 80 ◦C. The second
anodization step was performed for 5.5 hours under the same conditions as
those used in the first step.

TypicalAFM-images of the aluminium surface after removal of the porous
oxide as well as those of the porous alumina after the second anodization step
were demonstrated in [10]. Porous alumina template samples under study were
characterized by Field Emission Scanning Electronic Microscope (FESEM)
ZEISS MERLIN in Interdisciplinary Resource Center for Nanotechnology of
St. Petersburg State University.
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Figure 2 Two-step anodization.

To incorporate iodine species into quasi one-dimensional parallel
nanochannels of por Al2O3 host matrix, vapor phase adsorption at 175 ◦C
under iodine vapor pressure ∼ 140 kPa for 7 h was used, resulting in the
I/por Al2O3 nanocomposite formation.

Dielectric measurements of samples were carried out at the frequency of
1 kHz by an E7-13 impedance meter. The temperature dependences of sample
capacity C(t) and sample conduction G(t) were measured upon continuous
warming with a heating rate of 1 to 2 degrees per minute.

Some optical properties of the samples under study were characterized
by the spectroscopic ellipsometer “Ellips-1891” (Novosibirsk), working in
the static photometric mode without any rotating elements or modulators
[11, 12].



Physical Properties of Self-Assembled Porous Alumina Structures Filled 31

3 Results & Discussion

Although the sample preparation conditions were near the self ordered regime,
porous alumina template under study did not look like the highly ordered
ideal hexagonal structure (Figure 3), probably, due to the effect of impurities,
defects, and grain-size of the starting Al sheet on the degree of pore system
regularity and uniformity [6]. From the SEM images one can estimate the mean
pore diameter Dp ≈ 55 nm and the density of pores x ≈ 2×1010 pores/cm2.
The parallel alignment of the pores in the sample prepared under the similar
experimental conditions was proved in [6] by cross section SEM images.

Figures 4 and 5 demonstrate typical spectral dependences of ellipsometric
parameter Ψ(λ) and those of refractive index n (λ) for por Al2O3 host matrix
and I/por Al2O3 nanocomposite. Pronounced oscillations could be observed
in the long - wavelength region, where the films under study are rather
transparent. We suppose that this effect is probably due to the interference
of light in thin films. In this case one should calculate the por Al2O3 film
thickness d from the equation

m = 2d
√

n2 − sin2 θ · 1
λ

, (1)

Figure 3 SEM image of por Al2O3 template under study.
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Figure 4 Ellipsometric parameters Ψ(λ) of por Al2O3 host matrix and I/por Al2O3

nanocomposite.

Figure 5 Refractive index n (λ) of por Al2O3 host matrix and I/por Al2O3 nanocomposite
calculated from ellipsometric data.

where ϑ is the angle of light incidence, n ≈ 1.5 is the effective refractive index,
m is an integer (order of the interference maximum), λ is the wavelength at this
interference maximum. Our experimental data prove this assumption: typical
straight lines m = f(λ−1) plotted in Figure 6, are for different angles of light
incidence. Thus, according to our ellipsometric data, por Al2O3 film thickness
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Figure 6 Plots m = f(λ−1) for three different angles of light incidence ϑ; m is an integer
(order of the interference maximum), λ is the wavelength at this interference maximum.

d is (12.2 ± 0.1) μm. This value agrees with the estimation based on the
product of film growth rate (2μm/h [13]) and the second anodization step
duration (5.5 h). Thus, maximum value of the aspect ratio for the nanopores
in the por Al2O3 film under study is d/Dp ≈ 2 × 102 (in AFI zeolite-like
single crystals this value could be about two orders of magnitude higher).

The value of refractive index neff can be also estimated using the effective
medium approximation:

n2
eff = fn2

1 + (1 − f)fn2
2, (2)

where f ≈ πD2
px

4 ≈ 0.475 is the volume fraction of air voids in the
por Al2O3 matrix, n1 = nair, n2 ≈ 1.77 is the refractive index of bulk
Al2O3 [14], so we have neff ≈ 1.5 in the agreement with the index
extracted from the ellipsometric data. It should be also noted that there exists
a marked difference Δn ≈ 0.2 between the effective refractive index of the
I/por Al2O3 nanocomposite and that of the por Al2O3 matrix in the visible
spectrum (Figure 5) due to the infiltration of the guest substance (iodine) with
high refractive index into the channels of the host matrix (por Al2O3).

The measured conduction G value of the I/por Al2O3 nanocomposite
is 102 or 103 times larger than that of the host matrix, its temperature
dependence G(t) demonstrating distinct leap at t0 ≈ 70 ◦C (Figure 7). This
temperature was previously attributed to the phase transition of iodine species
in the quasi one-dimensional nanochannels of AFI zeolite-like nanoporous
aluminophosphate from the chain structures to molecular iodine (see Section
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Figure 7 Temperature dependences of the alternating-current (1 kHz) electrical conduction
G(t) for por Al2O3 host matrix and I/por Al2O3 nanocomposite. Vertical arrow shows the
temperature of phase (structural) transition.

1). However, it should be emphasized that the I/AFI nanocomposite displays
much more pronounced jump in the temperature dependence G(t) (Figure 8)
at ∼ 70 ◦C than the I/por Al2O3 nanocomposite does (Figure 7). It could
be due to more regular arrangement and better alignment of iodine chains
inside the narrow channels of AFI zeolite-like crystalline nanoporous matrix

Figure 8 Temperature dependence of the direct-current electrical conduction G(t) measured
along the channels of I/AFI nanocomposite with low iodine concentration [5].



Physical Properties of Self-Assembled Porous Alumina Structures Filled 35

Figure 9 Temperature dependences of the electrical capacity C(t) for por Al2O3 host matrix
and I/por Al2O3 nanocomposite measured at the frequency of 1 kHz.

compared with the distribution of iodine species in rather wide and disordered
pores in por Al2O3 under study.

The measured capacity C value of the I/por Al2O3 nanocomposite is
also ∼ 102 times larger than that of the host matrix, but its temperature
dependence C(t) (Figure 9) demonstrates another peculiarity – abrupt decrease
near t0 which is typical for phase transitions accompanied by destruction of
conducting percolation clusters [15, 16]. The low-temperature peculiarities
which could be observed at t ≈ 50 ◦C for initial por Al2O3 matrix are
probably caused by adsorption - desorption of water molecules [17].

Thus, one can suppose that the same phase (or structural) transition occurs
in I/por Al2O3 nanocomposite at t0 ≈ 70 ◦C, in spite of pore arrangement
irregularity and rather wide size distribution of pore diameter in the host
matrix.

4 Conclusions

Novel I/por Al2O3 nanocomposite has been prepared by infiltration of
por Al2O3 host matrix with iodine guest substance and has been characterized
by scanning electron microscopy, ellipsometry and electrical measurements.
Experimental results make it possible to suppose that the phase transition of
iodine species from the chain structures to molecular iodine occurs at ∼ 70 ◦C
in different types of host matrices possessing arrays of straight and parallel
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pores or channels with varying degrees of their regularity, uniformity as well
as aspect ratio values.
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