
Very Fast Algorithms for Eliminating the
Diffraction Effects in Protein-Based

Volumetric Memories

Dragos Trinca1 and Sanguthevar Rajasekaran2

1Sc Piretus Prod Srl, Osoi, Jud. Iasi, 707110, Romania
dntrinca@gmail.com
2Dep. of Computer Science and Engineering,
University of Connecticut, Storrs, USA
rajasek@engr.uconn.edu

Received 12 December 2014; Accepted 17 February 2015;
Publication 31 March 2015

Abstract

One of the current research directions in biological nanotechnology is the use
of bacteriorhodopsin in the fabrication of protein-based volumetric memories.
Bacteriorhodopsin, with its unique light-activated photocycle, nanoscale size,
cyclicity (>107), and natural resistance to harsh environmental conditions,
provides for protein-based volumetric memories that have a comparative
advantage over magnetic and optical data storage devices. The construction
of protein-based volumetric memories has been, however, severely limited by
fundamental issues that exist with such devices, such as unwanted diffraction
effects. In this paper, we propose some optimizations that can be applied to one
of the previously proposed algorithms for eliminating the diffraction effects.

Keywords: compression, biological nanotechnology, optimization.

1 Introduction

Much of the current research effort in biological nanotechnology is
directed toward self-assembled monolayers and thin films, biosensors, and
protein-based photonic devices [1–6]. Although a number of proteins have

Journal of Self-Assembly and Molecular Electronics, Vol. 2, 41–52.
doi: 10.13052/jsame2245-4551.213
c© 2015 River Publishers. All rights reserved.



42 D. Trinca and S. Rajasekaran

been explored for device applications, bacteriorhodopsin [3] has received,
it seems, the most attention. Bacteriorhodopsin protein memory devices
exhibit increased thermal, chemical and photochromic stability, and have the
advantage of being radiation-hardened, waterproof, and EMP-resistant. Such
devices are capable of storing large amounts of data in a small volume.

Although there are a number of prototype systems and preliminary
effort to apply them, the potential of this promising technology is relatively
unexplored. Research on protein-based memories started in the late 1980s
with considerable anticipation, but enthusiasm decreased shortly afterwards
for several reasons. Commercial development of spatial light modulators
(SLMs), that are an integral component of protein-based memories, was
slow and there were several issues, such as unwanted diffraction effects,
that limited performance in three-dimensional memory applications. More
recently, however, the development of high-definition television projection
equipment has resulted in the commercial availability of high-resolution, high-
performance and relatively inexpensive SLMs. But, fundamental problems
have remained. Two such problems are diffraction effects and scaling.

1.1 Diffraction Effects

The branched-photocycle three-dimensional memory, as discussed in [2, 7],
stores data by using a sequential two-photon process to convert bacteri-
orhodopsin (bR) in the activated region from the bR resting state to the Q
state. This process involves using a paging beam to select a thin page of
memory and a writing beam that is pixilated at those positions where data are
to be written. The transition from the bR resting state to the Q state occurs via
the intermediate states K, L, M, N, and O. Only the bR (bit 0) and Q (bit 1)
states are stable for long periods of time. By using 32-level grey-scaling and
two polarizations, each voxel can store 64 bits.Attempts to use higher levels of
grey-scaling have failed, mainly due to the problems of diffraction introduced
by having pages with significant differences in the average refractive indices.
To understand this problem, we note that protein corresponding to bit 0 has a
high refractive index and protein corresponding to bit 1 has a low refractive
index with reference to the red laser beam at 633 nm that is used to read out the
data. Prototypes made of the three-dimensional memory fail to work at high
storage densities when individual pages of memory have a preponderance of
bits of a given state. Consider the worst case – each page is either all 0’s or all
1’s. Then, a refractive index grating is created, that diffracts the laser beams
quite efficiently because individual pages are stored with separations of 6−20



Very Fast Algorithms for Eliminating the Diffraction Effects 43

μm. While these separations are significantly larger than the diffraction limit
would dictate, closer spacing is not possible, due to beam steering inside the
data cuvettes. The unwanted beam steering is due to refractive index gradients.
Algorithms that can store data at high resolution and that maintain the number
of 0’s equal to the number of 1’s would solve this problem [7–12].

2 Optimizing the APPROXv3 Algorithm

One way of ensuring an equal number of 0’s and 1’s is to replace a 0 with 01
and a 1 with 10. However, this procedure would reduce the available memory
by a factor of 2 (which means that the utility factor would be 50% in this case).
In [7] and [9] the authors have proposed some methods that provide utility
factors of more than 50%. For completely random data, however, the best
utility factor provided by the previously proposed algorithms is about 99.9%,
and can be obtained by using theAPPROXv1 algorithm proposed in [9], which
works as follows. Let I be the input data, and bI the binary representation of I .
If I is of length L, then bI is of length 8L, as each byte of data is represented
binary on 8 bits. Scan bI and count the number of 0’s and 1’s. Suppose that bI
doesn’t have an equal number of 0’s and 1’s. Scan bI from left to right, bit by
bit. For each position i in the scanning, 1 ≤ i ≤ 8L, do as follows. Let bI 1:i
be the portion already processed, and bI i+1:8L the portion that has remained
to be processed. Let bI 1:i be the complement of bI 1:i. If the binary string
bI 1:ibI i+1:8L has an equal number of 0’s and 1’s, then stop the scanning, let q
be this first position i that leads to a bI 1:ibI i+1:8L with an equal number of 0’s
and 1’s, and the output of APPROXv1 is xbI 1:qbI q+1:8L, where x is a binary
string of length 256 such that the first 120 bits of x store q, the next 3 bits store
the version of the algorithm (in this case 001), the next 5 bits are 00000 (not
used in APPROXv1) and the remaining 128 bits are used to make x a binary
string with an equal number of 0’s and 1’s. So, in conclusion, the length of the
output is 8L + 256. (There is no particular reason for choosing the length of
x to be 256, just that this value seems to be sufficient in practice.)

In [11], some optimizations that can be applied to APPROXv1 have been
proposed. Precisely, the optimizations proposed in [11] apply to the second
scanning step (when the position q is found), and work as follows. Suppose
that bI has more 0’s than 1’s. Let NofZs be the number of 0’s in bI , and
NofOs the number of 1’s in bI . Observe that every position i that leads to
a bI 1:ibI i+1:8L with an equal number of 0’s and 1’s has the property that
bI 1:i has exactly (i − ((NofZs − NofOs)/2))/2 + (NofZs − NofOs)/2 0’s
and (i − ((NofZs − NofOs)/2))/2 1’s. So, during the scanning, we can



44 D. Trinca and S. Rajasekaran

skip those positions that for sure don’t have this property, and examine only
those positions that may have this property, until the desired position is found.
Precisely, the modifications are the following.

• First, we don’t have to start the scanning from position 1. We can start
directly with position (NofZs−NofOs)/2, the reason being that we have
to complement exactly (NofZs −NofOs)/2 0’s in order to transform bI
into a binary string with an equal number of 0’s and 1’s.

• Second, let i be the current position in the scanning, and let Zs[i] be the
number of 0’s in bI 1:i. The number of 1’s in bI 1:i is, clearly, i − Zs[i].
We have two cases, either Zs[i] ≥ (i − Zs[i]) or Zs[i] < (i − Zs[i]).

1. If Zs[i] ≥ (i − Zs[i]), we check to see if Zs[i] − (i − Zs[i]) =
(NofZs−NofOs)/2. If yes, then the scanning stops, and let q be this
first position i that leads to a bI 1:ibI i+1:8L with an equal number of
0’s and 1’s. Otherwise, if Zs[i]−(i−Zs[i]) �= (NofZs−NofOs)/2,
then the next position in the scanning is i+ (NofZs −NofOs)/2 −
(Zs[i] − (i − Zs[i])).

2. If Zs[i] < (i − Zs[i]), the next position in the scanning is i +
(NofZs − NofOs)/2 + ((i − Zs[i]) − Zs[i]).

This is the APPROXv2 algorithm recently proposed in [11]. The output in
APPROXv2 is xbI 1:qbI q+1:8L, where the first 120 bits of x store q, the next
3 bits are 010 (the version of the algorithm, which is 2), the next 5 bits are
00000 (also, not used in APPROXv2), and the remaining 128 bits are used to
make x a binary string with an equal number of 0’s and 1’s, as usual.

Example 1 Suppose that

bI = 01011010110000011010000100001111.

bI has 18 0’s and 14 1’s. APPROXv1 works as follows.

• Since bI 1:1bI 2:32 has 17 0’s and 15 1’s, the scanning goes on to the next
position.

• Since bI 1:2bI 3:32 has 18 0’s and 14 1’s, the scanning goes on to the next
position.

• Since bI 1:3bI 4:32 has 17 0’s and 15 1’s, the scanning goes on to the next
position.

• Since bI 1:4bI 5:32 has 18 0’s and 14 1’s, the scanning goes on to the next
position.

• Since bI 1:5bI 6:32 has 19 0’s and 13 1’s, the scanning goes on to the next
position.



Very Fast Algorithms for Eliminating the Diffraction Effects 45

• Since bI 1:6bI 7:32 has 18 0’s and 14 1’s, the scanning goes on to the next
position.

• Since bI 1:7bI 8:32 has 19 0’s and 13 1’s, the scanning goes on to the next
position.

• Since bI 1:8bI 9:32 has 18 0’s and 14 1’s, the scanning goes on to the next
position.

• Since bI 1:9bI 10:32 has 19 0’s and 13 1’s, the scanning goes on to the next
position.

• Since bI 1:10bI 11:32 has 20 0’s and 12 1’s, the scanning goes on to the
next position.

• Since bI 1:11bI 12:32 has 19 0’s and 13 1’s, the scanning goes on to the
next position.

• Since bI 1:12bI 13:32 has 18 0’s and 14 1’s, the scanning goes on to the
next position.

• Since bI 1:13bI 14:32 has 17 0’s and 15 1’s, the scanning goes on to the
next position.

• Since bI 1:14bI 15:32 has 16 0’s and 16 1’s, we conclude that q = 14, and
the scanning stops.

Example 2 For the same bI , APPROXv2 works as follows.

• Since we have Zs[2] = 1 and 2 − Zs[2] = 1, the next position in the
scanning is 4.

• Since we have Zs[4] = 2 and 4 − Zs[4] = 2, the next position in the
scanning is 6.

• Since we have Zs[6] = 3 and 6 − Zs[6] = 3, the next position in the
scanning is 8.

• Since we have Zs[8] = 4 and 8 − Zs[8] = 4, the next position in the
scanning is 10.

• Since Zs[10] = 4 and 10−Zs[10] = 6, the next position in the scanning
is 14.

• Since Zs[14] = 8 and 14−Zs[14] = 6 and Zs[14]− (14−Zs[14]) = 2,
we conclude that q = 14.

• So, significantly less positions are checked in APPROXv2 as compared
to APPROXv1.

APPROXv2 can be optimized as follows. Assume that, besides the input data,
we have a parameter sl , such that 1 ≤ sl ≤ 8L, and such that 8L is a multiple
of sl . Then, we consider the following substrings of bI :

bI 1:sl , bI sl+1:2sl , ..., bI 8L−sl+1:8L.



46 D. Trinca and S. Rajasekaran

So, we are splitting bI into 8L
sl substrings, each of length sl . For each

bI i·sl−sl+1:i·sl , 1 ≤ i ≤ 8L
sl , consider the pairs (ai, bi) and (ci, di), where

ai = Zs[i · sl − sl + 1] − (i · sl − sl + 1 − Zs[i · sl − sl + 1]),
bi = Zs[i · sl ] − (i · sl − Zs[i · sl ]),

ci = (i · sl − sl + 1 − Zs[i · sl − sl + 1]) − Zs[i · sl − sl + 1],
di = (i · sl − Zs[i · sl ]) − Zs[i · sl ].

So, for each bI i·sl−sl+1:i·sl , ai and bi are the differences between the number
of 0’s and 1’s at the two ends, while ci and di are the differences between the
number of 1’s and 0’s at the two ends. APPROXv1 and APPROXv2 start with
a scanning of bI where we count the number of 0’s and 1’s. The pairs (ai, bi),
(ci, di) can be computed during this first scanning. We have the following [12]

Fact 1 If NofZs > NofOs , then there exists at least one i, 1 ≤ i ≤ 8L
sl , such

that
ai ≤ (NofZs − NofOs)/2 ≤ bi.

Otherwise, if NofOs > NofZs , then there exists at least one i, 1 ≤ i ≤ 8L
sl ,

such that
ci ≤ (NofOs − NofZs)/2 ≤ di.

Given this, APPROXv2 can be optimized as follows. Suppose that NofZs >
NofOs . Let j be the first index that satisfies aj ≤ (NofZs − NofOs)/2 ≤ bj .
Then, we can search for the position q only in the substring bI j·sl−sl+1:j·sl ,
because, at this point, we know that the position q we are looking for satisfies
j · sl − sl + 1 ≤ q ≤ j · sl . This is the APPROXv3 algorithm, proposed in
[12]. The output in APPROXv3 is as in APPROXv2, the only difference being
x121:123 = 011 (the version of the algorithm, which is 3).

Example 3 For the same bI , and assumming sl = 8, APPROXv3 works as
follows.

• First, we compute the pairs: (a1 = 1, b1 = 0), (a2 = −1, b2 = 2),
(a3 = 1, b3 = 4), (a4 = 5, b4 = 4).

• The first pair (ai, bi) that satisfies

ai ≤ (NofZs − NofOs)/2 ≤ bi

is (a2, b2).
• So, we search for the position q only in the substring bI 9:16, and we find

q = 14.



Very Fast Algorithms for Eliminating the Diffraction Effects 47

Table 1 Experimental results

Size of bI

APPROXv1 (only the
portion that finds the
position q)

APPROXv2 (only the
portion that finds the
position q) q

80,000,000 0.020 sec. 0.005 sec. 2,187,776
120,000,000 0.060 sec. 0.005 sec. 7,972,444
160,000,000 0.040 sec. 0.020 sec. 5,732,531

Some results when comparing APPROXv1 with APPROXv2 are given in
Table 1. APPROXv3 takes less than one millisecond, in general.

In this paper, we propose some optimizations that can be applied to
APPROXv3, and that could lead to faster practical algorithms for eliminating
the diffraction effects. Suppose that NofZs > NofOs , and let j be the first
index that satisfies

aj ≤ (NofZs − NofOs)/2 ≤ bj .

Then, we search for the position q in the substring bI j·sl−sl+1:j·sl , and we
find it.

If q ≤ 8L
2 , then the output is xbI 1:qbI q+1:8L, where x is a binary string of

length 256 such that the first 120 bits of x store q, the next 3 bits are 100, the
next 5 bits are 00000, and the remaining 128 bits are used to make x a binary
string with an equal number of 0’s and 1’s. If q ≥ (8L

2 + 1), then the output
is xbI 1:qbI q+1:8L, where x is a binary string of length 256 such that the first
120 bits of x store q, the next 3 bits are 100, the next 5 bits are 00000, and the
remaining 128 bits are used to make x a binary string with an equal number
of 0’s and 1’s.

Denote this version of APPROXv3 by APPROXv4. Clearly, in the case
q ≤ 8L

2 , APPROXv4 is basically APPROXv3. But, when q ≥ (8L
2 + 1), we

compute in the output of APPROXv4 the complement of bI q+1:8L instead
of the complement of bI 1:q, the reason being that in this case the length of
bI q+1:8L is strictly smaller than the length of bI 1:q. In practice, in the case
q ≥ (8L

2 + 1), this means that the larger the difference q − 8L
2 is, the faster

APPROXv4 is as compared to APPROXv3.

Example 4 Suppose that

bI = 01011010011010010110000101100010.

bI has 18 0’s and 14 1’s. Assumming sl = 8, APPROXv4 works as follows.



48 D. Trinca and S. Rajasekaran

• First, we compute the pairs: (a1 = 1, b1 = 0), (a2 = 1, b2 = 0),
(a3 = 1, b3 = 2), (a4 = 3, b4 = 4).

• The first pair (ai, bi) that satisfies

ai ≤ (NofZs − NofOs)/2 ≤ bi

is (a3, b3).
• Thus, we search for the position q only in the substring bI 17:24, and we

find q = 22.
• So, we are in the second case, when q ≥ (8L

2 + 1), that is, q is in the
second half of bI .

• The output is xbI 1:22bI 23:32, where x is a binary string of length 256
such that the first 120 bits of x store q = 22, the next 3 bits are 100, the
next 5 bits are 00000, and the remaining 128 bits are used to make x a
binary string with an equal number of 0’s and 1’s.

APPROXv4 can be further optimized as follows. Suppose that NofZs >
NofOs , and let j be the first index that satisfies

aj ≤ (NofZs − NofOs)/2 ≤ bj .

Then, we search for the position q in the substring bI j·sl−sl+1:j·sl , and find it.
If q ≤ 8L

2 , then the output is xbI 1:qbI q+1:8L, where x is a binary string of
length 256 such that the first 120 bits of x store q, the next 3 bits are 101, the
next 5 bits are 00000, and the remaining 128 bits are used to make x a binary
string with an equal number of 0’s and 1’s. If q ≥ (8L

2 + 1), then consider the
input rI , where rI i = bI 8L−i+1, that is, rI is the reverse of bI . For rI , we
know that NofZs > NofOs . From the pairs (ai, bi) corresponding to bI , we
consider the corresponding pairs for rI , say (a′

i, b
′
i). Let j′ be the first index

that satisfies
a′

j′ ≤ (NofZs − NofOs)/2 ≤ b′
j′ .

Then, we search for the position q′ in the substring rI j′·sl−sl+1:j′·sl , and find
it. That is, q′ is the first position i in rI such that rI 1:irI i+1:8L has an equal
number of 0’s and 1’s. Then, the output is xrI 1:q′rI q′+1:8L, where x is a binary
string of length 256 such that the first 120 bits of x store q′, the next 3 bits
are 101, the next 5 bits are 10000, and the remaining 128 bits are used to
make x a binary string with an equal number of 0’s and 1’s. So, in the case
q ≥ (8L

2 +1), the first 120 bits of x store the position q′ instead of q and since
q′ < 8L

2 then the 124-th bit of x, which is 1, will tell us, at decompression,
that at compression the input rI has been considered instead of bI .



Very Fast Algorithms for Eliminating the Diffraction Effects 49

Denote this version of APPROXv4 by APPROXv5. In the case q ≤ 8L
2 ,

APPROXv5 is basicallyAPPROXv4. When q ≥ (8L
2 +1), then inAPPROXv5

we consider the input rI instead of bI . In practice, in the case q ≥ (8L
2 + 1),

if q′ is significantly smaller than 8L − q (the length of bI q+1:8L) then
complementing rI 1:q′ instead of bI q+1:8L could lead to a significant speed-up.

We note that, in the case q ≥ (8L
2 +1),APPROXv5 does additional work as

compared to APPROXv4, by finding the position q′. However, this additional
work would be negligible in general. In practice, if the decompression time
is more important than the compression time, that is, if the time taken when
decompressing the output xrI 1:q′rI q′+1:8L is more important than the time
taken when constructing it, then if q′ is significantly smaller than 8L − q,
this means that decomplementing rI 1:q′ instead of bI q+1:8L would take
signifincatly less time at decompression.

Example 5 Suppose that

bI = 01011010011010010110000101100010,

as before. bI has 18 0’s and 14 1’s. Assumming sl = 8, APPROXv5 works as
follows.

• First, we compute the pairs: (a1 = 1, b1 = 0), (a2 = 1, b2 = 0),
(a3 = 1, b3 = 2), (a4 = 3, b4 = 4).

• The first pair (ai, bi) that satisfies

ai ≤ (NofZs − NofOs)/2 ≤ bi

is (a3, b3).
• Thus, we search for the position q only in the substring bI 17:24, and we

find q = 22.
• So, we are in the second case, when q ≥ (8L

2 +1), that is, q is the second
half of bI .

• Thus, we consider

rI = 01000110100001101001011001011010,

the reverse of bI .
• The pairs corresponding to rI would be (a′

1 = 1, b′
1 = 2), (a′

2 = 1,
b′
2 = 4), (a′

3 = 3, b′
3 = 4), (a′

4 = 5, b′
4 = 4).

• The first pair (a′
i, b

′
i) that satisfies

a′
i ≤ (NofZs − NofOs)/2 ≤ b′

i

is (a′
1, b

′
1).



50 D. Trinca and S. Rajasekaran

• Thus, we search for the position q′ only in the substring rI 1:8, and we
find q′ = 4.

• The output is xrI 1:4rI 5:32, where x is a binary string of length 256 such
that the first 120 bits of x store q′ = 4, the next 3 bits are 101, the next 5
bits are 10000, and the remaining 128 bits are used to make x a binary
string with an equal number of 0’s and 1’s.

Similarly as in the case of APPROXv3, for inputs bI of length a few millions
bits, both APPROXv4 and APPROXv5 take in our implementations around
one second.

3 Discussion and Conclusion

The algorithms presented are indeed very fast in practice, which should provide
for a real-time and fast working of protein-based memories. This conclusion
comes from the fact that, for example, APPROXv5 takes around one second
for an input of a few millions bits, so for a protein-based memory page
of one thousand bits in size, APPROXv5 would normally take around one
millisecond, which is quite fast. We anticipate that the processor latency caused
by the execution of one of these algorithms for the correct compression (when
writing a page in the protein-based memory) or the correct decompression
(when reading a page from the protein-based memory) would be negligible,
especially with the current technology, which means that in practice the
protein-based memories should be quite fast.

References

[1] R. R. Birge, Photophysics and molecular electronic applications of the
rhodopsins, Annual Review of Physical Chemistry, vol. 41, pp. 683–733
(1990)

[2] R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F.
Lawrence, D. Singh, Q. W. Song, E. Schmidt, J.A. Stuart, S. Seetharaman
and K. J. Wise, Biomolecular electronics: protein-based associative
processors and volumetric memories, Journal of Physical Chemistry B,
vol. 103, pp. 10746–10766 (1999)

[3] N. A. Hampp, Bacteriorhodopsin: mutating a biomaterial into an opto-
electronic material, Applied Microbiology and Biotechnology, vol. 53,
pp. 633–639 (2000)



Very Fast Algorithms for Eliminating the Diffraction Effects 51

[4] J. R. Hillebrecht, J. F. Koscielecki, K. J. Wise, D. L. Marcy, W. Tetley,
R. Rangarajan, J. Sullivan, M. Brideau, M. P. Krebs, J. A. Stuart and
R. R. Birge, Optimization of protein-based volumetric optical memories
and associative processors by using directed evolution, NanoBiotech-
nology, vol. 1, pp. 141–151 (2005)

[5] D. Marcy, W. Tetley, J. Stuart and R. Birge, Three-dimensional data
storage using the photochromic protein bacteriorhodopsin, in Proc. of
the 22nd Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC’00), pp. 1003–1006

[6] D. Oesterhelt, C. Bräuchle and N. Hampp, Bacteriorhodopsin: a bio-
logical material for information processing, Quarterly Reviews of
Biophysics, vol. 24, pp. 425–478 (1991)

[7] S. Rajasekaran, V. Kumar, S. Sahni and R. Birge, Efficient algorithms for
protein-based associative processors and volumetric memories, in Proc.
of IEEE NANO 2008, pp. 397–400

[8] S. Rajasekaran, V. Kundeti, R. Birge, V. Kumar and S. Sahni, Efficient
algorithms for computing with protein-based volumetric memory pro-
cessors, IEEE Transactions on Nanotechnology, vol. 10, pp. 881–890
(2010)

[9] D. Trincă and S. Rajasekaran, Coping with diffraction effects in protein-
based computing through a specialized approximation algorithm with
constant overhead, in Proc. of IEEE NANO 2010, pp. 802–805

[10] D. Trincă and S. Rajasekaran, Specialized compression for coping with
diffraction effects in protein-based volumetric memories: solving some
challenging instances, Journal of Nanoelectronics and Optoelectronics,
vol. 5, pp. 290–294 (2010)

[11] D. Trincă and S. Rajasekaran, Optimizing the APPROXv1 algorithm for
coping with diffraction effects in protein-based volumetric memories, in
Technical Summaries of SPIE Optical Systems Design, abstract 8167A-
71 (at page 14), 2011

[12] D. Trincă and S. Rajasekaran, Fast Algorithms for Coping with Diffrac-
tion Effects in Protein-based Volumetric Memories (Design and Imple-
mentation), Journal of Computational and Theoretical Nanoscience,
vol. 10, pp. 894–897 (2013)



52 D. Trinca and S. Rajasekaran

Biographies

D. Trinca received his BSc degree in 2003, from Facultatea de Informatica,
Universitatea Alexandru Ioan Cuza din Iasi, Romania, and his PhD degree in
2008, from the Department of Computer Science and Engineering, University
of Connecticut, USA. Currently he is with Sc Piretus Prod Srl in Osoi, jud.
iasi, Romania. His research interests are in the area of computational problems
in nanotechnology.

S. Rajasekaran received his BSc degree in Physics in 1977, from Madurai
Kamaraj University, India, and his PhD degree in Computer Science in 1988,
from Harvard University, USA. Currently he is with University of Connecticut,
USA. His research interests are in the area of applied algorithms.


