
DNA by Design: De novo Computational
Framework for DNA Sequence Design

and Nanotechnology

Simon Vecchioni1,2, Ruojie Sha2, Nadrian C. Seeman2,†

Lynn J. Rothschild3 and Shalom J. Wind4,∗

1Columbia University, Department of Biomedical Engineering, New York,
United States
2New York University, Department of Chemistry, New York, United States
3NASA Ames Research Center, Planetary Sciences Branch, California,
United States
4Columbia University, Department of Applied Physics and Applied Mathematics,
New York, United States
E-mail: sw2128@columbia.edu
∗Corresponding Author
†Professor Seeman passed away during the preparation of this manuscript.

Received 23 February 2022; Accepted 11 October 2022;
Publication 03 January 2023

Abstract

Chemical analysis of metalized DNA has made it quite clear that traditional
models of DNA thermodynamics are insufficient to predict and control
self-assembly in the context of orthogonally-paired nucleotides. Recently,
there has been an increase in reports of Watson-Crick assembly of DNA
wires and nanostructures [1–4]. The ability to add or remove pairing rules
between nucleobases toward non-Watson-Crick, or orthogonal, self-assembly
alters the fundamental language of DNA assembly: this change in behavior
necessitates an accompanying shift in computational design. We begin by

Journal of Self-Assembly and Molecular Electronics, Vol. 1, 17–76.
doi: 10.13052/jsame2245-8824.2022.002
This is an Open Access publication. © 2023 the Author(s). All rights reserved.

18 S. Vecchioni et al.

exploring the state-of-the-art in DNA modeling, and include both sequence
analysis and sequence design practices. We then start from first principles
and establish a mathematical basis for heterostructure and ‘nmer’ analy-
sis in connected DNA networks that operates without assumptions about
nucleobase parity. A generalized search algorithm is then constructed in
Matlab and implemented using evolutionary techniques. We then discuss
DNA nanostructure design criteria, operation efficiency in differentially-
connected networks, and the application of computationally-aided sequence
design for nanotechnological applications. We design a double crossover
DNA motif with a silver base pair modification as a test case, and demonstrate
successful model implementation. In sum, we present a novel computational
framework for geometry-informed optimization of DNA networks. This tool
is meant to enable design of both linear and nonlinear polynucleotide assem-
blies with inherent modularity for base parity, metalation, or more exotic
nucleotide substitutions that may arise from advances in synthetic biology,
nanomaterials and nanomedicine.

Keywords: .

1 Use of Computational Modeling in DNA Sequence
Design

1.1 DNA Hybridization by Design

DNA hybridization is an emergent property that is predicated upon the base
complementarity of two or more oligonucleotides [5]. The formation of a
double helix or other nucleic acid heterostructure requires the association
of typically more than three complementary nucleotides via hydrogen bond-
ing [6–8]. Qualitative analysis shows that in canonical, “Watson-Crick” (WC)
pairing environments, deoxyadenosine (dA, or A) will form two hydrogen
bonds with deoxythymidine (dT, or T), while deoxyguanosine (dG, or G)
will form three hydrogen bonds with deoxycytidine (dC, or C). Formation of
consecutive antiparallel (5’-3’: 3’-5’) base pairs will allow the assembly of
a B-form double helix with a periodicity of 10.4 base pairs (bp), or 3.57 nm
in neutral pH [9]. In an expansion of WC parity, it has been more recently
shown that the introduction of the metal ions Ag+ and Hg2+ will mediate
the formation of homonucleotide bonds between opposing C and T bases,
respectively [10, 11].

DNA by Design: De novo Computational Framework 19

Alternative structures can be formed, by either forcing parallel base
pairing (5’-3’: 5’-3’) to form a left-handed Z-form helix [12]; by dehydration
to form an A-form helix [13]; or through the introduction of homonucleotide
repeats, such as protonated polycytosine assumption of an i-motif structure at
acidic pH [14], or polyguanosine assumption of a tetraplex helix over long
distances in the presence of divalent counterions [15]. More fundamental
to the self-assembly of macromolecular nanotechnology, proper design of
multi-oligo systems can allow for helical branching, an idea first proposed
in 1982 by Nadrian Seeman [16], and which has been expounded upon many
times over in subsequent decades [16–18]. Complex structures, called DNA
origami, have been subsequently created using large ssDNA viral plasmids
and hundreds of short (20 nt) staple oligos to pinch the template into desired
conformations, a technology invented by computer scientist Paul Rothemund
in 2006 [19, 20].

With only four nucleotides to work with, and only two canonical base
pairs, the design and construction of DNA oligomers with topologically-
exclusive thermodynamics is a significant challenge. In the same way that
single amino acid mutations can inhibit proper protein folding to generate
disease states, imprecise DNA sequence design can promote the formation of
thermodynamic mush, rather than meticulously prepared lattices or networks.

Each DNA nanotechnology group has their own method for sequence
design, driven by a need to promote hybridization over tens of nanometers
with ever-increasing geometric complexities to form vast arrays of two- and
three-dimensional structures, including rings, coils, crystallographic arrays,
and semiconducting cubes [21–26]. For example, the field standard used by
the Seeman group is a legacy FORTRAN algorithm, SEQUIN, which allows
for the design of structures in the command line with iterative, click-through
construction [27]. This algorithm has driven the generation of oligomer
sequences for three decades, but does not have the modularity to tackle non-
canonical or artificially-expanded genetic coding for modern nanostructure
design. The Rothemund group has used variety of computational tools to
design non-interfering DNA oligomers for origami structures, first using
unpublished Matlab code, and then switching to origami tool caDNAno [28].
UNIQUIMER 3D is a more modern tool that integrates 3D structure with
sequence design, allowing for more interactive structure design, but this
tool again suffers from constraints around base parity and part parame-
terization [29]. A field-unifying, modular sequence design tool has yet to
emerge that covers the diverse needs of researchers, though there are many

20 S. Vecchioni et al.

examples of software packages that address different stages of the design
process [30–33].

Comprehensive oligonucleotide design parameters were driven largely
by the expanding needs of molecular biologists and the researchers at the
forefront of the Human Genome Project: it was necessary to design DNA and
RNA primers to amplify particular fragments of DNA [34]. The design of
effective polymerase chain reaction (PCR) primers required the application
two critical pieces of information: (1) the oligo dissociation temperature
or melting temperature and subsequent matching within +/−2◦C of the
melting temperatures for the forward and reverse primers; and (2) the exact
size, and subsequent minimization of, unwanted primer heterostructures,
or ‘primer dimers’ [30]. Modern software packages for molecular biology
include primer design tools that execute iterative optimization to fix these
two parameters [30]. The requirement of accurate, sequence-specific melting
temperatures produced a strong drive to fully elucidate nucleic acid ther-
modynamics, while the need to design DNA sequences with ever-increasing
genetic databases covering millions of nucleotides spurred the development
of machine learning and iterative optimization approaches to multi-objective
algorithmic design.

1.2 DNA Thermodynamics

It was realized early on that the thermodynamics of individual nucleotides
in long oligo chains are not linearly-independent; rather, there are adjacency
effects along the macromolecule unrelated to the contribution of hydrogen
bond energy stored in base pairs. The best example of this resulted from
analysis of dG:dT mismatches, which are considered a wobble base pair gen-
erally recognized and excised by DNA repair enzymes [35]. The confounding
effect of G-T mismatches on overall strand formation served as a model for
eventual analysis of adjacency, where sets of three consecutive nucleotides
were analyzed in a frame, using the 3-nt codon/anti-codon set found in the
ribosome as a template.

It was through painstaking thermal denaturation analysis performed via
UV-Vis spectrophotometry in the SantaLucia laboratory in the late 1990s
that a nearest-neighbor model of DNA assembly was elucidated, using sets
of two—not three—adjacent nucleotides summed axially along the oligonu-
cleotide [35, 36]. In this approach, each pair of adjacent bases contributes
to the energy profile of the oligomer, such that the energy contribution of
each nucleotide will be accounted for twice: once for each neighboring DNA

DNA by Design: De novo Computational Framework 21

base. The terminal bases, left out of this accounting regime, instead contribute
strand initiation and termination energies, namely the energy required to form
the first base pair and break the last base pair in a DNA duplex. Extensive
analysis showed that each set of nearest neighbors is linearly-independent,
providing a unique enthalpic, entropic and energetic contribution. Studies
soon followed to add corrections for ribonucleic acid (RNA), locked nucleic
acid (LNA) and mixed, non-specific bases [37, 38]. In this way, the free
energy of any duplex or primer dimer could be calculated to a high degree
of accuracy.

Unfortunately, a reasonable extension of the relatively simple free energy
calculation to duplex melting temperature was not achievable. Simplis-
tic formulas for melting temperature prediction were utilized, one of the
most popular using the energetics and the concentration [39]: the nearest-
neighbor sequence enthalpy (∆H), the nearest-neighbor entropy (∆S), Rgas

(1.987 cal/Kmol), and the concentration of the oligomer in moles/L ([oligo]).
The final temperature in degrees Kelvin is independent of any contributions of
salt stabilization and pH, and it is therefore only useful as a reference number
in very rough calculations. Other forms of this approach are also feasible,
using the GC concentration, the Na+ concentration, and other factors, but it
was the DNA sequence design companies, in an effort to provide reliable,
competitive products, who funded and carried out the experiments necessary
to identify a comprehensive formula for buffer-specific melting temperature
in arbitrary oligonucleotides.

Working with oligonucleotide synthesis company IDT-DNA to predict
primer melting behavior for customers, Owczarzy and colleagues provided
the most complete melting analysis of nucleic acids to date [40]. This model
corrects for buffer counterions at intermediate concentrations by separating
samples into three regimes based on the ratio of monovalent to divalent cation
buffer species (constant R, in their literature). Different constants of varying
complexity are applied in Na+-heavy, Mg2+-heavy, and balanced situations,
relying on the oligo concentration, salt concentration, pH, and GC content
(sample data shown in Figure 1).

The behavior profile was elucidated using nonlinear fits and correction
parameters that are not intuitive in the way of Allawi and SantaLucia’s
nearest-neighbor model of free energy. Though highly specific, these for-
mulas do not work for all oligos in all aqueous environments: homobase
repeats, low concentrations of counterions, or the presence of other stabilizing
and destabilizing molecules, modifications and substrates do not perform
according to this model.

22 S. Vecchioni et al.

Figure 1 Simulation of Figure 8 in Owczarzy, 2008 [40] in Matlab, where oligonucleotide
5’-TGGTCTGGATCTGAGAACTTA-3’ is analyzed. A) Ion fraction R is calculated using the
formula:

√
[Mg2+]/[Na+], and three parameter regimes are shown in blue, green and yellow.

B) The counterion-dependent melting temperature is calculated. Reproduced from Vecchioni
et al., 2018 with permission from River Publishers [41].

The application of both nearest-neighbor and melting temperature analy-
ses does not extend to orthogonal base pairs: a full nearest-neighbor energy
profile of the dC:Ag+:dC pair has not been elucidated, leading researchers
to simply correct the predicted melting temperature of mismatched oligonu-
cleotides by adding 1–2◦C per metal base pair. This practice does not fully
take into account metallophilic attraction between silver ions [42], which
would contribute adjacency effects outside the two-body problem of nearest-
neighbor calculations, though initial studies suggest that reaction favorability
of a second ion is drastically reduced after a nearby ion is intercalated [43].
These factors suggests that a nearest-neighbor model may require knowledge
of the opposing oligomer to allow for base pair and intercalant corrections,
greatly increasing the overall number of variables and the complexity of the
calculation.

1.3 Sequence Optimization Via Genetic Algorithms

Genetic algorithms (GAs) were first described by Dr. John Holland in the
1960s as an optimization tool based on observations of evolutionary biol-
ogy [44]. The premise of GAs, and most optimization algorithms, involves
assessing the strength, or fitness, of a particular solution to a problem. Like
elementary guess-and-check methods, slight variation, or mutation, is applied
to a solution. The relative fitness of the new solution is assessed, and over
successive iterations, the fitness landscape is mapped to find local or global

DNA by Design: De novo Computational Framework 23

fitness maxima—the optimization algorithm seeks better answers through
iteration. The primary difference between guess-and-check methods and GAs
is the number of parallel solutions. Like in population biology, a set of solu-
tions is initialized, fitness analyzed, and tournaments carried out to produce
new generations of the population. In order to promote solution diversity,
successful tournament winners exchange information to allow independent
assortment of solution characteristics.

The linear DNA sequences in primer and nanostructure design make
the analogy to living systems highly useful. Use of mutation and crossover
in silico directly corresponds to natural DNA design and optimization.
As such, GA tools are particularly well-suited to evolutionary optimization.
The challenge to developing in silico models of DNA optimization lies in
defining a fitness function that is both simple to calculate and well-suited to
the design objectives. Unlike in living systems, the computational researcher
does not have the luxury of hour- or yearlong generations over which to assess
DNA sequence fitness. The fitness of a particular solution, or set of DNA
sequences, is necessarily subject to more than one criterion, and can include:
melting temperature, heterodimer size, guanine repeats, etc. There are several
strategies for taking a multi-objective fitness function and producing a simple,
comparison-based algorithm to assess relative fitness. The most common
heuristic involves condensing the many criteria into a single numerical score
based on the relative importance of the different design criteria [45]. In doing
so, the various objectives are assigned variable weights, and sorted according
to numerical size. A GA iterator may be designed to either maximize or
minimize this fitness score, depending on the nature of the criterion.

The primary drawback of GA tools lies in this definition of this multi-
objective fitness function. If there were only one criterion and a continuous
fitness landscape, as in the problem: ‘minimize the distance from the square
root of 200,’ there would be little trouble in attaining a highly precise near-
best solution. The use of a multi-objective fitness score with weights makes
the fitness landscape discontinuous: once a change occurs to increase the
highest-weight criterion, solutions are boxed into one corner of the fitness
landscape, preventing any true global optimization of lower-weight criteria.
The fitness hill-climbing function becomes a stair-climbing function, where
it is improbable that the iterator will climb back down to get around a
block in the landscape. In this way, multi-objective GAs frequently find only
local—rather than global—fitness maxima.

To combat the intractability of local fitness maxima, evolutionary
algorithms turn to population dynamics, introducing diversity artificially.

24 S. Vecchioni et al.

This takes the form of randomization or hypermutation, niche penalties based
on population similarity, and, most importantly, gene flow. Randomization
involves the formation of a small number of new solutions in a popula-
tion with a much higher mutation rate than average to introduce diversity.
While potentially quite useful, large tournament sizes will forcibly exclude
these solutions from passing on information. Niche penalties involve increas-
ing the global mutation rate when the overall similarity reaches a critical
value. In the case of oligonucleotides, this may be assessed via the mean
squared distance from the average sequence value at a particular position.
Depending on the size of the steps in the fitness score, this approach may
introduce diversity, or simple nudge the average solution only temporarily
away from the local fitness maximum, only to return in several optimization
iterations.

The two most successful approaches to diversity include elitism and gene
flow. Elitism is a method that allows for greater mutation rates by saving a
small number of the fittest solutions in each generation without any modifica-
tion. In this way, the best solution is not lost while the general population can
be subjected to higher rates of change to promote diversity. There are several
methods for applying elitism, but the simplest in the context of DNA design
is simply copying without mutation [45]. As in population biology, diversity
can be introduced into an isolated population through the introduction of new,
medium-fitness, individuals. In this way, gene flow is used to combat genetic
drift, or niche creation. There are several established methods of information
exchange, but all rely primarily on optimizing several independent popu-
lations and exchanging information either at distinct intervals, or after the
simulation in a subsequent ‘F2 cross’ [45]. Crossing the best solutions in
several populations in a follow-up simulation pits solutions clustered around
distinct fitness maxima against one another, allowing for a more granular
blending of characteristics at different levels in the fitness function. While
there is no approach that completely fixes the diversity problem, a pointed
combination of these strategies may lead to the identification of near-best
solutions, given sufficient computational resources.

Several tools for primer design by GA already exist [28, 30, 46], and they
rely on a multi-objective fitness function that weighs melting temperature,
relative length, and dimer size between forward and reverse primer pairs. This
relatively simple fitness approximation relies the primary assumption that any
∼20 nt primer will have only one target site in a prokaryotic or eukaryotic
genome, and the calculation restricts heterodimer analysis to the primer
oligonucleotides only, excluding effects of off-target dimerization on fitness

DNA by Design: De novo Computational Framework 25

calculation. This significantly speeds computation, allowing for a swift iden-
tification of primers in gene targets in the context of thousands to millions of
nucleotides. Conventional DNA synthesis techniques at companies like IDT
DNA are ∼99% efficient at adding a correct nucleotide to a growing oligo,
meaning that for each nucleotide letter in an oligonucleotide sequence, there
is a compounding 1% chance of an improper base. In 2019, synthesis of 25
nmol of a 20 nt primer cost∼$7. Subsequent purification of the sequences via
gel electrophoresis (PAGE) or liquid chromatography (HPLC) at the same
company cost an additional $60. Due to the relaxed specificity needs of
PCR, primers are generally not purified—99% sequence specificity over 20
nt leaves ∼80% primer accuracy to perform PCR (0.9920 = 0.82). Over
successive amplification, defective primers remain inert. Assuming a rea-
sonable concentration of correctly-synthesized primer, the reaction will run
without oligo purification. As a result, the low cost of 20 mer oligonucleotides
allows for occasional off-target dimerization, and primer failure, meaning
that a computationally-efficient fitness approximation is good enough for the
problem statement in PCR.

By contrast, in the case of DNA nanostructure design, any off-target
dimerization will cause the failure of structural assembly. The critical regions
for crossover between two adjacent helices is the 4 bp J1 junction (CAGG:
CCTG), which is chosen for confirmational stability, stacking geometry, and
a history of successful assembly [2, 18, 47, 48]. Any deviation from this
sequence and the crossover will not occur, necessitating purification of oligos
after synthesis: a lattice built with 30 mers will be unable to polymerize
without removing the 27% failed product. The time and cost of purifica-
tion thus makes the penalty of using a relaxed fitness calculation far more
prohibitive. To mitigate this much tighter problem definition, a more robust
fitness calculation and accompanying genetic algorithm toolbox are required.

As discussed, there exist a variety of tools for DNA nanotechnology
design, often with an emphasis on aiding definition of sequence geom-
etry (e.g. UNIQUMER3D [29] and caDNAno [28], industry standards).
The sequence generation tools are quite relaxed, and there does not yet exist
a reliable tool for specifying conserved regions of DNA, applying fitness
criteria differentially across the network, or, importantly, the incorporation
of orthogonal base pairing.

In this study, we present a new computational model with the goal of
bridging the gap between structure topology and the sequences that exist
within that framework. This model seeks to ultimately provide a general-
izable, geometry-informed platform for sequence generation with diverse

26 S. Vecchioni et al.

design criteria and base pairing environments for nucleic acid nanotechnol-
ogy applications.

2 Computational Analysis of Nanostructure Composition

A de novo computational platform for DNA sequence analysis is derived and
described from first principles. This platform is built from the perspective of
modular nanostructure design, though it can be used in both branched and
linear applications. Formulas are written to be independent of Watson-Crick
parity and make note of any base pairing assumptions that are made in their
derivation.

2.1 Nanostructures, Nodes and Sequences

Let M be a DNA nanostructure composed of a finite number of oligonu-
cleotide sequences (S) where S ∈ N∗ for N∗ = {1, 2, . . .}, which bind
together in topological units called nodes (N) for N ∈ N∗. M is a structure
with L total base pairs, where L ∈ N∗, and the nodes in this network have
lengths Li in base pairs (bp) for i ∈ [1, N]. A network with one node is
considered an unbranched duplex. By convention, in this analysis, a node
is considered to be double stranded (ds), where each oligonucleotide (ni) is
bound to its logical complement (n̄i) in a base pair (bi), where bi = [ni:n̄i],
though some nodes may be single-stranded (ss) by design (N.B. a node in
this context is separate from its common usage to mean “junction” in the
field [49], and used in the network analysis sense to mean “distinct unit in a
data structure”).

5′−n1 n2 n3 . . . ni−3′

| | | |
3′−n̄1 n̄2 n̄3 . . . n̄i−5′

(1)

DNA network M can be drawn conventionally using its continuous
oligonucleotide sequences (Figure 2A), but can be more robustly analyzed
using a nodal model (Figure 2B), where a node contains a simplex or
duplex with internally consistent pairing rules, chemistry, geometry, and has
connections to other nodes from its template and complement strands, and its
5’ and 3’ ends:

Complementarity in nucleobases typically follows the binding of one
purine (R) to one pyrimidine (Y) in the following set of Watson-Crick (WC)
rules: { [dA:dT], [dG:dC], [rA:rU], [rG:rC] }, where dni is a deoxyribonu-
cleotide, and rni is a ribonucleotide. Orthogonal base pairs can break the

DNA by Design: De novo Computational Framework 27

Figure 2 Representations of a Holliday junction, A) in sequence format with four sequences
Si for for i ∈ [1, 4], and B) in node format with four nodes Nj for for j ∈ [1, 4]. The primary
difference between these modes of representation is that the geometry and complementarity
is carried on individual nucleotides in sequence format; whereas the nature of node-based
representation omits the need for complementarity indicies and just tracks the connections, or
geometry, at the edges of the nodes.

symmetry of WC pairing, as in the case of metal base pairs { [dC:Ag+:dC],
[dT:Hg2+:dT] }. The difference in nucleobase correspondence between
canonical DNA and a silver metal pairing system (CC) can be seen in the
following matrix:

WC CC

dA
dT
dG
dC

:

dT
dA
dC
dG

dA
dT
dG
dC

:

dT
dA
dC

dG, dC

 (2)

2.2 Heterostructures

In order to self-assemble N nodes from S oligos, analysis of nucleobase
sequence must be performed to bias the energy landscape toward the desired
geometry. This requires analyzing M for its heterostructures (d), or unwanted
binding configurations, with length Ld. Analysis of homo- and heterodimers
is carried out by aligning component strands of S or N and comparing
each base in varying frames. An alignment frame (k) can be defined as the
juxtaposition of two oligonucleotides, one in the 5’–3’ orientation and the
other in 3’–5’ orientation, with fixed base correspondence, where k will be a
frame of ksize potential base pairs. Two complementary oligonucleotides of
length LN will form a perfect dimer of size Ld = LN with perfect alignment
by design (see (1) above).

28 S. Vecchioni et al.

A homodimer is a kinetic trap for an oligonucleotide in which it is able
to bind to itself in a misaligned frame, as with single-stranded oligo Sa of
length La = 11 nt, ksize = 9 bp, Ld = 3 bp:

5′ − CATTTGCGAAA−3′

| | | | | |
3′−AAAGCGTTTAC−5′

(3)

A heterodimer can be defined as the inappropriate binding of two dis-
parate oligonucleotides, as with single-stranded oligos Sb and Sc of lengths
Lb = 11 nt, Lc = 14 nt, ksize = 11 bp, and Ld = 7 bp:

5′−ATATATCGCCG− 3′

| | | | | | |
3′ − CTTATATAGGTAGA− 5′

(4)

Detailed analysis of alignment and indexing for dimer analysis can be
found in Appendix A.

2.3 Other Sequence Design Criteria

In addition to dimer size minimization, DNA nanostructure design requires
the minimization of other types of criteria as a result of thermodynamic or
design-related criteria. All of the following analyses can be carried out using
the single strand indexing rules found in Tables 3–4. Because they pertain
to the presence of consecutive sequence elements, the rules described do not
need to be subjected to repetition through slip and frame alignment, as with
homo- and heterodimer search algorithms.

2.3.1 Gap analysis: ‘gapN’
To utilize the emergent electrical characteristics of nucleotide pairing, defin-
ing, a resistor (WC pairing), a conductor (dC:Ag+:dC pairing) [50], or a
semiconductor (guanine tetraplex formation) [51], it is most likely necessary
to maximize density of a particular pairing regime across a polymerized
oligonucleotide. Criteria such as gate analysis, which sets a percent occu-
pancy for a particular nucleotide, may lead to unintended clustering of
the preferred nucleotide at one end of the sequence, as with 75% guanine
sequence: 5’-GGGGGGGGGATA-3’. While guanine may have the low-
est base ionization energy of the four WC nucleotides [52], an AT 3mer
will interfere with the proposed conductance pathway. Gate criteria are thus

DNA by Design: De novo Computational Framework 29

useful for applications such as primer design, where GC occupancy is ana-
lyzed in percentages. For nanowire design, we instead introduce gap criteria,
in which the maximum distance between a target base pair, not nucleobase,
is tracked and minimized. Take for instance the sequence in (59) below where
AT gap analysis is tracked and set to a maximum of 1 base pair.

5′−ATATATCAAGT−3′

| | | | | | | | | | |
3′−TATATAGTTCA−5′

(5)

Gap analysis on this sequence shows the presence of 2 gaps in the AT
occupancy, each of size 1 bp. Note the equvalence between dA:dT and dT:dA.
The following sequence (60) instead fails the ‘gap1’ criterion for the AT
base pair:

5′−ATATACCAAGT−3′

| | | | | | | | | | |
3′−TATATGGTTCA−5′

(6)

Two gaps are identified, the first [dCdC:dGdG], and the second [dG:dC].
Highlighted in red is the size 2 bp gap that violates the prescribed ‘gap1’ rule.
We can again perform the same ‘gap1’ analysis for CC pairing (dC:Ag+:dC):

5′−CCACCCCACCT−3′

• • | • | • • | • • |
3′−CCTCGCCTCCA−5′

(7)

In (7), the sequence presents 3 size 1 bp gaps (bold) in the CC paired
nanowire, passing analysis for ‘gap1’ consideration. Note that the cytosine
base in [dC:dG] does not evade detection as it is not paired to an opposing
cytosine nucleobase, and it therefore counts toward a CC sequence gap. In
contrast, the following sequence will fail ‘gap1’ analysis:

5′−CCACACCACCT−3′

• • | • | • • | • • |
3′−CCTCTGCTCCA−5′

(8)

In (8), the presence of the [dAdC:dGdT] subsequence acts as a size 2 bp
CC gap (red), failing ‘gap1’ analysis, but passing ‘gap2’ analysis. To design
dC:Ag+:dC nanowires with reasonable molecular conductance, we apply a
‘gap1’ CC rule to force any region that is conductive by design to have at
most one non-metallic base pair in a row.

30 S. Vecchioni et al.

2.3.2 Purines and pyrimidines: ‘R4’ and ‘Y4’
The overabundance of consecutive purines or pyrimidines in single oligonu-
cleotides may affect the twist of the double helix through abnormal stacking
interactions. To maintain predictable rotational dynamics within a struc-
ture, allowing the formation of predictable geometry, it is conventional to
restrict the total number of consecutive purines (‘R’ = A,G) and pyrimidines
(‘Y’ = C,T) to four. Note that unlike gapping, this tracking occurs on single
nucleotides, not base pairs, generating parallel analyses for each half of the
node. An example of ‘Y4’ analysis is shown in (63):

5′−CCACTCCTCCT−3′

• • | • | • • | • • |
3′−CCTCAGCACCA−5′

(9)

Here the top sequence presents a pyrimidine 8mer (red) as well as a 2mer
(bold). The bottom strand presents a 4mer, a 2mer and a 1mer (bold). The top
sequence will fail ‘Y4’ analysis. In contrast, the following duplex shows ‘R4’
analysis:

5′−CCACTCCTCCT−3′

• • | • | • • | • • |
3′−CCTCAGGAGCA−5′

(10)

The top sequence passes purine analysis (though it has 8 consecu-
tive pyrimidines), while the bottom strand presents 5 consecutive purines
[dAdGdGdAdG] (red) and summarily fails the ‘R4’ criterion. Because of C:C
pairing, neither (9) nor (10) have symmetrical purine and pyrimidine analysis.
In WC conditions, all purine repeats will pair with pyrimidine repeats of equal
size within the same node.

2.3.3 GC/AT: ‘S4’/ ‘W4’
For similar reasons, it is customary to minimize the number of consecutive
C:G and A:T pairs to 4 bp. By convention, C:G pair are abbreviated as
‘strong’ (S) owing to their three hydrogen bonds, while A:T bonds are
abbreviated as ‘weak’ (W) for containing two hydrogen bonds. Because
currently known metal base pairs are homobase dimers, both strands in a
duplexed node will achieve the same fitness score:

5′−ATATACCAAGT−3′

| • | | | | | | | | |
3′−TTTATGGTTCA−5′

(11)

DNA by Design: De novo Computational Framework 31

In (65), the sequence presents 5mer, 2mer and 1mer weak pair repeats,
which fails the ‘W4’ design criterion, even with a dT:Hg2+:dT base pair.
By contrast, the C:C bonding sequence in (66) will symmetrically fail ‘S4’
analysis:

5′−CCACACCGCCT−3′

• • | • | | • | • • |
3′−CCTCTGCCCCA−5′

(12)

Here, both the top and bottom strands present strong base pair repeats of
sizes 5 (red), 2 and 1 nt (bold), regardless of ion distribution. The symmetry
of this fitness criterion is immune to homobase orthogonal base pairs.

In practice, the W4 criterion may be relaxed to accommodate other design
parameters.

2.3.4 Guanine repeats: ‘G3’
The overexpression of guanine in an oligonucleotide may lead to the forma-
tion of a guanine tetraplex. To avoid kinetic traps or unintended geometries
associated with tetraplex formation, we restrict the number of consecutive
guanines to 3 nt, applying a ‘G3’ cap on single stranded sequences. This rule
is not symmetrical, and the fitness score does not carry over from template to
complement.

5′−GGCTCCCCAGT−3′

| | | | | | | | | | |
3′−CCGAGGGGTCA−5′

(13)

The duplex shown in (67) will fail ‘G3’ analysis, as the bottom sequence
has a guanine 4mer (red). The largest guanine repeat in the top sequence is 2
nt (bold). To fix a sequence with this design, we can consider switching one
[dC:dG] pair for a [dG:dC] pair.

3 Computational Design of Nanostructures using a
Genetic Algorithm

Using the computational framework established above, we outline the design
and construction of a genetic algorithm toolbox in Matlab for branched,
orthogonal DNA sequence design.

3.1 Generic Workflow

The algorithm follows a general GA workflow with initialization and iteration
phases. Design of topology and conserved regions occurs on paper and in

32 S. Vecchioni et al.

Figure 3 Process workflow for nanostructure sequence design algorithm.

other software packages. Within this toolbox there are three distinct phases
of operation. In the first phase, optimization and iteration criteria are defined
precisely through graphical user interface (GUI) and .m file entry. In the sec-
ond phase, the model is then initialized, and data structures are pre-allocated
based on user specifications. Parallel iteration begins in separate population
files, and a subsequent F2 cross between best solutions is carried out. In
the final phase, runtime analysis is performed, sequence data are stored, and
graphical data are exported for the user. A diagrammatic explanation of this
information can be found in Figure 3.

DNA by Design: De novo Computational Framework 33

3.2 Nanostructure Optimization

Detailed implementation of the genetic algorithm can be found in
Appendix D. The main optimization occurs through fitness calculation for
a population of solutions. Detailed fitness calculation and weight can be
found in the Appendix. In brief, the criteria described in Appendix D are
implemented in a weighted sum, with dimers of size 8 evaluated to be of
equal penalty to repeats (Y3, R3, etc.) of size 3. This balance can be manually
specified in the running of the algorithm. Evaluation of runtime statistics and
fitness tracking is discussed.

4 Experimental Validation: Algorithmic Design of a
Non-canonical DNA Nanostructure

4.1 Nanostructure Design Frame

To validate our genetic algorithm, we modified a well-characterized DNA
nanostructure to robustly assemble with environmental Ag+. As a test case,
we utilized one of the Double crossover motifs, the DAO molecule, which
was first described in 1998, and is characterized by two Antiparallel double
helical segments of 32 bp with two crossovers spaced an Odd number of half
turns apart (16 bp) [18]. In this experiment, junction sequences were altered
to include a C:C spacer between the adjacent helices (nodes N19 and N20,
Figure 4). This modification is slight enough to allow the overall topology to
be retained but provides an impetus for non-canonical sequence optimization
to account for off-target dimerization in the presence of Ag+.

4.2 Computational Modeling

Twenty nodes were initialized into the GA with varying criteria. Junction
nodes (N3, N4, N6, N7, N12, N13, N15, N16) were left unmodified from the
original motif and set to uneditable. Terminal nodes (N1, N9, N10, N18) have a
GC gap applied to force a strong pair at that position. The C-Ag+-C crossover
nodes (N19, N20) were set to CC-parity and left uneditable. In this way, the
bulk of optimization was carried out on the duplex nodes (N2, N5, N8, N11,
N14, N17, as well as restrained N1, N9, N10, N18) to optimize sequences that
balanced the diverse design criteria of the overall nanostructure. Standard
runtime parameters were utilized: 10 solution populations of size 40, a
mutation rate of 5%, and a simulation time of 500 generations. In Appendix
D, Figure 21 shows the fitness scores of populations in this simulation, while

34 S. Vecchioni et al.

Figure 4 Template for modification of the DAO tile with C-Ag+-C bonds. The four
sequences (SX) are marked as well as the twenty nodes for computational design (NX). Design
considerations at each point are marked. On the external frame bold black lines indicate
template strands, while thin black dotted lines indicate complements. Directionality (5′ to
3′) is indicated by arrows. Conserved sequences are indicated by letters (G,T,A,C), while
nucleotides that are optimized computationally are denoted with a colored dash (‘—’).

Table 1 DAO-CCxover tile sequences (CC bold)
Sequence # Nucleotide Sequence
DAO-CCx-S1 5’-GTAACACACCCAGATAG-3’
DAO-CCx-S2 5’-CTATCTGGACTAAGTAGACAATCACCC

AAACTATGACATCCTGTGTTAC-3’
DAO-CCx-S3 5’-GTGAATCCTGATTGTCTACTTAGTCGG

ATGTCATAGTTTGGACTTGTTG-3’
DAO-CCx-S4 5’-CAACAAGTCGGATTCAC-3’

Figures 22–24 are representative of shorter simulation times on this frame
(100 generations). Model-generated sequences can be found in Table 1, while
the dimerization and repeat statistics can be seen in Table 2. The final motif
is shown in Figure 5.

DNA by Design: De novo Computational Framework 35

Table 2 DAO-CCxover modeling results
Histogram Bins for n-mers 1-mers 2-mers 3-mers 4-mers 5-mers
Dimers 1630 518 168 44 5
Purine repeats 18 8 10
Pyrimidine repeats 16 10 8 2
AT repeats 18 8 14
GC repeats 36 4 4
Guanine repeats 18 4

Figure 5 DAO-CCxover motif. (A) Model-generated sequences are shown on the design
frame. (B) Nondenaturing 6% PAGE shows the successful assembly of the motif (64 bp)
with stoichiometric [1] or 10-fold excess [10] AgNO3. Precipitation of environmental Ag+ by
adding NaCl to 50 mM [P] does not perturb the motif. Single stranded DNA without annealing
is shown for contrast.

36 S. Vecchioni et al.

4.3 Experimental Results

The four sequences in Table 1 were purchased from IDT DNA (Coralville, IO,
USA) with denaturing polyacrylamide gel electrophoresis (PAGE) purifica-
tion. Annealing was carried out at 2 uM DNA in 10 mM MOPS with 12.5 mM
MgSO4 and 100 mM NaNO3 at pH 7.7 by heating a water bath to 95◦C and
slowly cooling to room temperature over 48 hours. Resulting structures were
visualized by 6% native PAGE and stained with StainsAll (Sigma-Aldrich,
St. Louis, MO, USA). Precipitation of environmental Ag+ after annealing
was carried out as described previously [41], by adding NaCl to 50 mM and
extracting supernatant after sedimentation. This process was repeated three
times.

The gel results show that the DAO variant assembles reliably into a single
band after stoichiometric annealing of oligos and ions. Precipitation of the
Ag+ does not disrupt the motif, except in the case of 10-fold excess Ag+,
where some single-stranded oligos are visualized. The applications of this
structure are beyond the scope of this manuscript, but it is clear that sequences
generated by our genetic algorithm perform well, annealing into the desired
motif in the presence of Ag+.

5 Conclusions

We present a novel computational model grounded upon ab initio calculations
on DNA networks. We demonstrate that nucleic acid secondary structures can
be broken into a set of linearly-independent nodes and edges, and that these
networks are amenable to analysis through careful sequence alignment. By
employing reverse indexing schemes and operation count optimization, we
are able to efficiently scan large networks in an iterative framework. The frac-
turing of a nanostructure into component nodes allows for the assignation of
diverse sequence design criteria, in which we are able to apply diverse parity
schemes, junction sequences, sticky ends, and nucleobase gap criteria in a
modular fashion. After parametrization of these DNA networks, we build and
employ a genetic algorithm for the optimization of large solution pools, and
we employ population dynamics and parallel computing to overcome local
fitness maxima and provide more globally-optimized nucleic acid sequences.

To validate our model, we modified a canonical DNA motif, the DAO
molecule, to contain two C:Ag+:C base pairs, and further optimized the
sequence to be resistant to off-target dimerization driven by the presence

DNA by Design: De novo Computational Framework 37

of Ag+. This algorithmically-generated motif assembled efficiently, under-
scoring the utility of our computational framework. In this manner, we have
solved the sequence design problem for metal-mediated and other orthogonal
base pairing regimes through the use of a modular genetic algorithm. This
model may be used to subsequently probe the topological implications of par-
ity modifications by providing robust oligomeric sequences for challenging
design environments.

Acknowledgements

We gratefully acknowledge support by National Space Technology Research
Grant NNX14AM51H to SV, LJR, and SJW. This work was partially sup-
ported by the US National Science Foundation via grant 1662329 to SV. RS
and NCS were supported by DE-SC0007991 from the Department of Energy
and CCF-2106790 from the National Science Foundation.

Data Availability

Code and supporting data are available upon request to sv1091@nyu.edu.

Appendix A: Algorithmic Analysis of Heterodimers using
Frame Alignment

A.1 Oligonucleotide Slip

Testing for inappropriate heterostructures requires comparison of nucleotides
with different alignment frames, in which ’slip’ can be defined as the size
of the 5’ or 3’ overhang of the first sequence. Slip can be visualized in the
following manner:

5′− ATATATCGCCG− 3′

| | | | | | |
3′−CT TATATAGGTAGA− 5′

(14)

5′ − TCA TTTGCGAAA−3′

| | | | | |
3′− AAAGCGTTTAC− 5′

(15)

Scheme (14) shows the top strand slipping to the right two nucleotides
relative to alignment, while (15) the top strand slipping to the left three

38 S. Vecchioni et al.

nucleotides. These two slip conditions can be called forward slip and
backward slip (sf and sb), respectively. The case where two strands are
aligned in the correct frame can be called a special case of forward slip, where
sf = 0. To avoid repeat comparison, the case where sb = 0 is disallowed. A
general formula for slip can be derived from the following example, where
two sequences (Sa, Sb) with unequal lengths (La = 5 nt, Lb = 3 nt) are
aligned in all possible frames:

sf = 0
5′−n1 n2 n3 n4 − 3′

| | |
3′−n5 n6 n7−5′

sf = 1
5′− n1 n2 n3 n4 − 3′

| |
3′ − n5 n6 n7−5′

sf = 2
5′− n1 n2 n3 n4 − 3′

|
3′ − n5n6 n7−5′

sb = 1
5′ − n1 n2 n3 n4−3′

| | |
3′− n5 n6 n7−5′

sb = 2
5′ − n1n2 n3 n4−3′

| |
3′− n5 n6 n7 − 5′

sb = 3
5′ − n1n2n3 n4−3′

|
3′− n5 n6 n7 − 5′

(16)

Forward slip begins with frame alignment and proceeds until the first
nucleotide in Sa (5’–3’) corresponds to the last nucleotide in Sb. Slip val-
ues can be tallied: sf = [0,1,2], while sb = [1,2,3,4]. Frame sizes can be
written as an array: ksize = [3,2,1] for forward slip; and ksize = [3,3,2,1] for
backslip. The relationship between these arrays can be formalized as follows.
The maximum forward slip value is one less than the length of the second
sequence:

sf ∈ [0, Lb − 1] (17)

Backward slip follows a similar convention, avoiding perfect frame align-
ment:

sb ∈ [1, La − 1] (18)

DNA by Design: De novo Computational Framework 39

A.2 Frame Alignment

There is one alignment frame per slip condition. With (17) number of align-
ment frames (krange) in forward slip can be expressed as the total number of
nucleobases on the second strand:

krange = Lb (19)

The number of backward alignment frames corresponds with the number
of nucleobases in the first strand, disallowing a slip of zero:

krange = La − 1 (20)

The alignment frames for comparison will have varying sizes, depending
on whether slip is forward or backward, and which sequence is longer, and
can be defined in the following manner:

ksize = [k1 . . . kj . . . kn]; n = krange (21)

For forward slip conditions where Lb > La for kj ∈ ksize , kj may be
written as an array with a formula in two halves. The first part of ksize
is simply the length of the smaller sequence, written out for the length
differential between the two sequences:

(kj)j∈[1,n−La+1] = La (22)

The second part is the decay of the previous length to the minimum frame
size, 1:

(kj)j∈[n−La+2,n] = La − (j − (n− La + 1))

(kj)j∈[n−La+2,n] = n− j + 1 (23)

When Lb ≤ La, there is one expression, as the frame decays from the
length of the shorter sequence (Lb) to one:

(kj)j∈[1,n] = Lb − (j − 1)

(kj)j∈[1,n] = Lb − j + 1 (24)

For backward slip alignment with La > Lb, ksize may again be written
as an array in two parts. The first section is again the length of the shorter
sequence written for the length differential between the two strands:

(kj)j∈[1,n−Lb+1] = Lb (25)

40 S. Vecchioni et al.

Table 3 Forward slip alignment formulations
Variable Number
Name Definition in Text

Slip values sf sf ∈ [0, Lb − 1] (17)
Number of frames krange , n krange = Lb (19)

Frame sizes ksize , kj kj

(kj)j∈[1,n]

= Lb − j + 1 La ≥ Lb

(kj)j∈[1,n−La+1] = La,

(kj)j∈[n−La+2,n]

= n− j + 1 La < Lb

(24) (22, 23)

Table 4 Backward slip alignment formulations
Variable Number
Name Definition in Text

Slip values sb sb ∈ [1, La − 1] (18)
Number of frames krange , n krange = La − 1 (20)

Frame sizes ksize , kj kj

(kj)j∈[1,n−Lb+1] = Lb,

(kj)j∈[n−Lb+2,n]

= n− j + 1 La > Lb

(kj)j∈[1,n] = La − j La ≤ Lb

(25, 26) (27)

The second part of the array contains frames of decaying size from Lb to 1:

(kj)j∈[n−Lb+2,n] = Lb − (j − (n− Lb + 1))

(kj)j∈[n−Lb+2,n] = n− j + 1 (26)

Whereas when La ≤ Lb, we have a single expression for kj in ksize :

(kj)j∈[1,n] = La − j (27)

The relationship between length, slip and alignment is summarized in
Tables 3–4 below.

A.3 Nucleobase Comparison Indices

With these definitions in hand, exact formulas can be written for nucleobase
comparison indices at prescribed slip conditions. The nucleobases to compare
can be written in a visually simple manner where the first base index of SA
is at the 5’ end, and base indices for SB start at the 3’ tail—a process akin
to flipping the ‘complement’ sequence for the reader (see Figure 6). Imple-
menting this formula in silico is, however, impractical: the cost of transposing

DNA by Design: De novo Computational Framework 41

Figure 6 Using a simplified formula to compare two sequences requires the transpose of
the second sequence into the 3’–5’ orientation. This transpose costs ∼N operations per slip
frame, and at worst N2 total operation for all slip conditions. A more efficient algorithm can be
written without conversion to SBT , where the formula for indexing in SB begins from the end
of the sequence, rather than the start. Performance analysis of this reverse indexing algorithm
is carried out in Appendix B.3.

a sequence array of size 11 (one helical turn) in the Matlab environment is
approximately 1 µs. We will investigate the number of operations below, but
for any iterative algorithm, this operation should be avoided. As such, we
write formulas for comparison of two oligonucleotides with both sequences
written in the 5’ to 3’ direction.

We define the variable m as the position within the alignment frame, or the
number of nucleobases from the leftmost (5’) base in sequence SA. According
to Figure 3, the comparison position in SA, am, will proceed from the 5’ end,
while the comparison index in SB , bm, will proceed from its 3’ end. The
nucleobase indices for comparison in SA and SB (am, bm) with slip sj and
alignment frame size kj for j ∈ [1, krange], and an alignment frame index m
∈ [1, kj] can be written for forward slip:

am = m (28)

bm = LB − sj −m+ 1 (29)

A similar index pair can be written for backward slip:

am = m+ sj (30)

bm = LB −m+ 1 (31)

42 S. Vecchioni et al.

In this way, for all m in a given alignment frame, comparison can be
carried out between SA(am) and SB(bm).

A.4 Dimer Indices

This also means that a potential base pair in the given alignment frame can
be written as [SA(am): SB(bm)]. For a dimer d of length Ld that terminates at
frame index m in alignment window kj with slip sj , the indices of the base
sequence of d in sequences SA and SB (nucleobase sequence indices da and
db, respectively) can be written with the following formulas:

da ∈ [am + 1− Ld : am] (32)

db ∈ [bm − 1 + Ld : bm] (33)

Plugging the definitions of am (28) and bm (29) for forward slip condi-
tions into (32) and (33), we achieve the following generalized expression for
dimer index:

da ∈ [m+ 1− Ld : m] (34)

db ∈ [LB − sj −m+ Ld : LB − sj −m+ 1] (35)

The same process can be carried out for backslip conditions, plugging
(30) and (31) into (32) and (33):

da ∈ [m+ sj + 1− Ld : m+ sj] (36)

db ∈ [LB −m+ Ld : LB −m+ 1] (37)

These results are summarized in Tables 5–6 and can be used to directly
track and index dimers in a programming environment.

Table 5 Forward slip comparison indices
Variable Number
Name Definition in Text

Strand 1 index am am = m (28)
Strand 2 index bm bm = LB − sj −m+ 1 (29)
Dimer position
strand 1

da da ∈ [m+ 1− Ld : m] (34)

Dimer position
strand 2

db db ∈ [LB − sj −m+ Ld : LB − sj −m+ 1] (35)

DNA by Design: De novo Computational Framework 43

Table 6 Backward slip comparison indices
Variable Number
Name Definition in Text

Strand 1 index am am = m+ sj (30)
Strand 2 index bm bm = LB −m+ 1 (31)
Dimer position strand 1 da da ∈ [m+ sj + 1− Ld : m+ sj] (36)
Dimer position strand 2 db db ∈ [LB −m+ Ld : LB −m+ 1] (37)

Appendix B: Algorithmic Analysis of DNA Heterodimers

In order to design an efficient algorithm for in silico dimer analysis, it is
necessary to elucidate the number of operations required to analyze M for
heterostructures. A generalized expression can be derived by first looking at
a one-node structure, or duplex.

B.1 One-node Structure

Comparison of any set of sequences for dimers requires checking each
strand against itself and against each other strand for all allowable slip and
alignment conditions. In a single-node network, or DNA duplex, we can see
the operations in Figure 7:

Figure 7 Comparison of SA and its complement for heterostructures requires three sets of
operations: two self-comparisons (A), and one complement comparison (B).

We can introduce two different types of operations, A and B: Operation
A involves the comparison of a single-stranded oligo against itself; whereas
Operation B involves the comparison of an oligo and its direct complement,
ignoring the case where they are properly aligned, which is precluded by their
complementarity. Formulation of these comparisons requires, by definition,
that the lengths of the two oligos be identical. The number of comparisons (N)
directly scales with the length of the sequences, and involve the summation

44 S. Vecchioni et al.

of the allowable alignment frames, or ksize . To do so, we introduce the
summorial operator $, which is the additive cousin of the factorial operator:

x! =
x∏

i=1

i

x$ =

x∏
i=1

i (38)

The summorial operation can be decomposed into the following formula:

x$ =
n(n+ 1)

2
(39)

B.1.a Homodimer operation counts (Operation A)
The number of comparisons in A can be calculated by summing all com-
ponents (kj) of forward and backward frames, ksize , where the number of
slip cases, nsf and nsb, are equivalent to forward and backward krange,
respectively:

NA =

nsf∑
j

kj +

nsb∑
j

kj (40)

Substituting (19) for n and (24) for kj in the left sigma:
nsf∑
j

kj =

La∑
j=1

(La − j + 1)

= (La)$

=
(La)(La + 1)

2

Again substituting (20) and (27) in the right sigma:
nsb∑
j

kj =

La−1∑
j=1

(La − j)

= (La − 1)$

= (La)$− La

=
(La)(La + 1)

2
− La

DNA by Design: De novo Computational Framework 45

Figure 8 Self-dimerization (Operation A) comparison of generalized single-stranded, 8 nt
oligonucleotide SA is shown in both forward and backward slip conditions. Note that, by
convention, backslip starts with a value of 1, while forward slip begins at perfect alignment,
or a slip value of 0. To speed computation, formulas for the comparison of SA without 5’ and
3’ realignment are shown. This involves the reverse indexing formulas found in Tables 5–6.

Collecting terms, we can simplify to obtain the operation count for A:

NA =
(La)(La + 1)

2
+

(La)(La + 1)

2
− La

NA = L2
a (41)

We can see a practical demonstration of this operation in Figure 8. In this
example, sequence SA has a length of 8 nt. Summation of the comparisons
across each annealing frame is shown.

Operation A is efficient at order O(n2) for n nucleotides. In the specific
case of Operation A, we can draw lines of symmetry at the halfway point of
the alignment frame in the case of even ksize , or around the center nucleotide
in the case of odd ksize , and note that the comparisons will be identical
across this line of symmetry (Figure 9). With this in mind, we can reduce the
number of comparisons by tracking the even- or oddness of the frame size and
performing operations up to, but not past, the line of symmetry. Any dimer
that exists once the center of the alignment frame is reached will be doubled
in length after omitting odd-length pivot nucleotides. The tracking of frame
size modulo 2 requires several floating point operations, and is only practical
in high-performance situations for large L. A more efficient Operation A can
be seen in Figure 10. This reduced dimerization search operates at roughly
O(12n

2).

B.1.b Heterodimer counting with logical complements
(Operation B)
We can sum ksize for Operation B in a similar way, making sure to exclude
sf = 0 to avoid counting logical complements as dimers, and we arrive at

46 S. Vecchioni et al.

Figure 9 Two different alignment frames are shown for oligonucleotide SA, one of even ksize
(8 nt) and the other with odd ksize (7 nt). A line of symmetry can be drawn down the middle
for the even case, and around the pivot nucleotide for the odd case. Because the nucleotides
are identical in the opposing strands, the comparisons across the symmetry lines will also be
identical: (n1 == n8) = (n8 == n1).

Figure 10 A high-performance algorithm for Operation A is shown, wherein the frame size
and evenness are tracked. Comparisons are not continued past the line of symmetry, and any
extant dimers that occur at this line are doubled (subtracting 1 nt for odd frame sizes). Note
reverse indexing formulas found in Tables 5–6 to account for two 5’–3’ aligned sequences.

a general expression. Setting up the problem, we generate an expression
identical to (40):

NB =

nsf∑
j

kj +

nsb∑
j

kj (42)

DNA by Design: De novo Computational Framework 47

Figure 11 Complement dimerization (Operation B) comparison of generalized single-
stranded, 8 nt oligonucleotide SA and its logical complement SA is shown in both forward
and backward slip conditions.

By disallowing sf = 0, we generate identical backslip conditions for both
sigmas, which condenses with the application of definitions (20) and (27):

nsf∑
j

kj =

nsb∑
j

kj =

La−1∑
j=1

La − j

= (La − 1)$

=
(La − 1)(La)

2

NB =
(La − 1)(La)

2
+

(La − 1)(La)

2

NB = L2
a − La (43)

We can see a practical demonstration of this operation in Figure 11. In this
example, sequence SA has a length of 8 nt. Summation of the comparisons
across each annealing frame is shown.

Note that both forward and backward slip start with values of 1 in order
to avoid counting complementarity-by-design as a heterodimer. In order to
speed computation, formulas for comparison without 5’ and 3’ realignment
are shown, which involves the reverse indexing formulas found in Tables 5–6.

Operation B is efficient at orderO(n2−n) for n nucleotides. The number
of overall comparisons shown in Figure 11 will include redundant operations
when the base pairing rules are symmetric (see Figure 12). This is only true
when each nucleobase has one and only one logical complement, which
indicates that a full oligonucleotide or dimer substring will have exactly
one complement as well. In the case of ion pairing, or any scheme where a

48 S. Vecchioni et al.

Figure 12 Slip value of 1 is shown for forward and backward slip. We can see that when
there is Watson Crick complementarity, these two comparison conditions are identical. A
higher performance algorithm in canonical pairing environments can be enacted by omitting
backslip, as (n2 == n1) = (n1 == n2).

Figure 13 When Watson-Crick or other unitary complement pairing rule system is in effect,
backslip may be omitted for symmetry reasons. Tracking the pairing regime does not require
significant computation time, and thus tracking the usefulness of this updated algorithm can
be considered essential for dimer identification as it will double comparison speed. Reverse
indexing formulas for nucleotide position tracking are found in Table 5.

nucleobase has multiple complements, the full operation, shown in Figure 8,
is necessary. If true DNA Watson Crick rules are in effect, Operation B may
be halved in size by omitting backslip, as shown in Figure 13. The updated
WC algorithm for Operation B is efficient at order O(12(n2 − n)).

B.1.c Application to a one-node structure (DNA duplex)
For any DNA duplex consisting of two complementary oligonucleotides of
equal length (L), we can express the number of comparisons (N) by adding

DNA by Design: De novo Computational Framework 49

Figure 14 Comparison of nucleotides for dimer search in a two-node structure with three
distinct Operations, A, B and C, representing self-comparison, complement comparison, and
other sequence comparison, respectively.

together the operations above. Operation A occurs twice, as each strand must
be compared to itself, while Operation B occurs once for the union of the two
strands in non-complementary configurations.

Nduplex = 2NA +NB

Nduplex = 3L2 − L (44)

B.2 Multi-node structure

A DNA nanostructure, primer-target complex, or other mixture of oligonu-
cleotide species can be represented as a multi-node network such as the
two-node structure shown in Figure 14. As before, the comparisons can be
broken down into distinct procedures. Operations A and B return in the same
form, and we introduce Operation C, which we define as the alignment and
comparison of sequences from disparate nodes. In this operation, we dispense
with the requirement that La = Lb.

B.2.a Heterodimer comparison in disparate nodes (Operation C)
To formulate the number of comparisons, we sum forward and backward ksize
vectors with the allowance of sf = 0. Recall that the formulas for ksize are
dependent upon the relative lengths of the sequences being compared. As a
first assumption, we require that the network be sorted in descending length
order, where L1 ≥ L2 · · · ≥ Li ≥ · · ·Ln. This requirement comes from
the length-dependent derivation of ksize (Tables 3, 4). The final form of the

50 S. Vecchioni et al.

formula will be independent of assortment, and we can dispense with this
assumption after derivation.

When La ≥ Lb, we can write the following sum, where nsf and nsb are
the number of slip conditions (krange) forward and backward, respectively,
and kj is the corresponding frame size, similar to (40) and (42):

NC =

nsf∑
j

kj +

nsb∑
j

kj (45)

The left sigma can be rewritten by again substituting (19) and (24):

nsf∑
j

kj =

Lb∑
j=1

(Lb − j + 1)

= (Lb)$

=
(Lb)(Lb + 1)

2
(46)

The righthand sigma can be rewritten by breaking it into two vectors,
substituting (20) and (26). To address the case where La = Lb, it can be noted
that (26) and (27) are equivalent over the region of interest (substitute (20)
into (26) to check):

nsb∑
j

kj =

La−Lb∑
j=1

Lb +

Lb∑
j=1

(Lb − j)

= Lb(La − Lb) + (Lb − 1)$ (47)

Collecting terms from (46) and (47), we have:

NC = Lb(La − Lb + 1) + 2(Lb − 1)$

Simplifying, we arrive at an expression independent of the relative size of
La and Lb:

NC = Lb(La − Lb + 1) + (Lb − 1)(Lb)

NC = LaLb (48)

We can see a practical demonstration of Operation C in Figure 15. In this
example, sequence SA has a length of 8 nt, while SB has a length of 5 nt.

DNA by Design: De novo Computational Framework 51

Figure 15 Nucleotide comparison for heterodimer search between disparate oligos (Oper-
ation C) is shown. By convention, backward slip starts at a value of 1 to avoid identical
comparison, and LA ≥ LB to maintain consistency of ksize formulas (Tables 3–4). In practice,
this need not be the case, and the relative oligo lengths can be tracked without significant
computational overhead.

Note that, by convention, LA ≥ LB . Operation C is efficient at order of
approximately O(n2) for n nucleotides, or exactly O(n2) where LA == LB .
An analysis of the effect of the relative sizes of LA and LB on the order of
convergence can be found below in Appendix B.2.d.

B.2.b General expression for any network
Returning to Figure 14, we can see that for each node in the system,
self-comparison contributes 2A(La)+B(Lb) operations. Comparison between
nodes, for node number D greater than one, we contribute 4C(La,Lb) com-
parisons. We can generalize this expression for total comparisons (N) in the
following manner:

N = 2

D∑
i=1

A(i) +

D∑
i=1

B(i) + 4

D∑
j>i

C(i, j) (49)

Substituting in (41), (43), and (48), we arrive at a general expression for
the number of comparisons in any network with D double-stranded nodes:

N = 2

D∑
i=1

Li
2 +

D∑
i=1

(Li
2 − Li) + 4

D∑
i

D∑
j>i

C(i, j)

N =
D∑
i

(3Li
2 − Li) + 4

D∑
j>i

LiLj (50)

52 S. Vecchioni et al.

B.2.c Comparison of fragmented and single-node networks
An important relationship in computational network analysis is whether the
comparison efficiency converges faster in a duplex or a fragmented network.
Specifically, will an increased number of nodes for the same number of total
base pairs speed or slow computation? To investigate, let us define a network
M1 of D1 nodes where D > 1. To perform this analysis, we require that the
network M1 be possessed of nodes with equal lengths, Ln. We can count the
number of operations as before:

N1 =

D1∑
i

(3Li
2 − Li) + 4

D1∑
j>i

LiLj (51)

We can further count the total number of base pairs (B1) in the network
by adding together the lengths of all the nodes (Li) in the network:

B1 =

D1∑
i

Li (52)

We can then create a M2 linear structure for comparison containing one
node (D2 = 1) and whose total length (Lq) is identical to the length of all the
nodes in M1:

B2 =

D2∑
1

Li = Lq (53)

B2 = B1 (54)

We can then rewrite the number of operations (N2) in terms of Lq and
substitute in (52):

N2 =
1∑
i

(3Li
2 − Li)

N2 = 3Lq
2 − Lq

N2 = 3

(
D1∑
i

Li

)2

−
D1∑
i

Li (55)

Invoking the requirement that all nodes in M1 have equal length, Ln, we
can write:

N2 = 3D2
1L

2
n −D1Ln (56)

DNA by Design: De novo Computational Framework 53

Returning to N1 we can simplify the number of operations, again
requiring that all Li = Lj = Ln. We rewrite (51) using Ln:

N1 =

D1∑
i

(3Ln
2 − Ln) + 4

D1∑
i

D1∑
j>i

L2
n

N1 = D1(3Ln
2 − Ln) + 4(D1 − 1)$ L2

n

N1 = D1(3Ln
2 − Ln) +

4(D2
1 − 4D1)

2
L2
n

N1 = (2D1
2 +D1)L2

n +D1Ln (57)

We can then take the difference between the two operations (56) and (57):

N2 −N1 = (D2 −D)L2
n (58)

Normalizing to the sequence length (B1) of the network, we obtain the
following relationship:

N2 −N1

B1
=

(D2
1 −D1)L

2
n

D1Ln

N2 −N1

B
= D(Ln − 1) (59)

This formulation suggests that a fragmented network is more efficient
to analyze for heterostructures than a one-node network of equal size. This
relationship can be seen visualized in Figure 16, where 100 random networks
of sizes D ∈ [1, 30] are analyzed, averaged, and compared to (57) and (58).
Ultimately, the speed that is gained by fragmenting a network is lost in the
tracking of that geometry, but the trade-off has important implications for
algorithm design.

B.2.d Comparison of symmetric and random networks
It is clear that fragmented networks are more efficient to analyze as the
number of nodes increases. The analysis thus far has considered symmetric
networks where each node has the same length as every other node, a require-
ment that was imposed to streamline the comparison. How then does the
symmetry component affect the computation? We can calculate the difference
in operation count between any random network M0 with total base pairs B0

and a symmetric network M1, possessed of the same total length, B1 = B0,

54 S. Vecchioni et al.

Figure 16 Comparison operation counts in multi-node networks and single-node networks
of equal size. Random networks are initialized, analyzed, and averaged for the number of
nodes, with 100 trials at each value of D. A) Operation counts for random networks over
increasing number of nodes. Overlaying (58) as a fit line for the average behavior serves
as a reasonable approximation, where Ln is given as the average node size, or Lmax/2, 15
bp. B) Normalizing over the number of base pairs achieves a linear relationship between the
difference and the number of nodes. Here, equation (59) serves as a reasonable fit line for the
average data at each value of D.

and the same number of nodes D1 = D0 = D. For network M1, we know
the operation count N1 in terms of average node Ln and D (57):

N1 = (2D2 +D)L2
n +DLn

We have an equation for the operation count N0 for a generalized network
of unspecified node lengths (50):

N0 =

D∑
i=1

(3Li
2 − Li) + 4

D∑
i

D∑
j>i

LiLj

Recall that in a symmetric network, we know the number of base pairs in
terms of Ln and D:

B1 =
D∑
1

Ln = DLn (60)

And we know that Ln is an average of random node sizes:

Ln =

(
D∑
i=1

Li

)/
D (61)

DNA by Design: De novo Computational Framework 55

We can then substitute (61) into the definition of N1 and simplify:

N1 = (2D2 +D)
1

D2

(
D∑
i=1

Li

)2

+

(
D∑
i=1

Li

)
(62)

We then subtract N1 from N0:

N0 −N1 = 3

D∑
i=1

Li
2 + 4

D∑
i

D∑
j>i

LiLj −
(

2D2 +D

D2

)(D∑
i=1

Li

)2

(63)

The sums in this sequence must be rearranged to cancel, as (
∑
x)2 6=∑

x2. To simplify, we separate the sum squared term into two separate sums:(
D∑
i=1

Li

)2

=

(
D∑
i=1

Li

) D∑
j=1

Lj

=

(
D∑
i=1

Li

)Li +
D∑
j 6=i

Lj

=

D∑
i=1

Li
2 +

D∑
i=1

D∑
j 6=i

LiLj

Substituting into (63), we can rearrange:

N0 −N1 =

(
D2 −D
D2

) D∑
i=1

Li
2 + 4

D∑
i

D∑
j>i

LiLj

−
(

2D2 +D

D2

) D∑
i=1

D∑
j 6=i

LiLj (64)

Now we can split the last term into two sums and combine like terms
across the expression:

N0 −N1 =

(
D2 −D
D2

) D∑
i=1

Li
2 + 4

D∑
i

D∑
j>i

LiLj

56 S. Vecchioni et al.

−
(

2D2 +D

D2

) D∑
i=1

D∑
j<i

LiLj −
(

2D2 +D

D2

) D∑
i=1

D∑
j>i

LiLj

N0 −N1 =

(
D2 −D
D2

) D∑
i=1

Li
2 +

(
2D2 −D
D2

) D∑
i

D∑
j>i

LiLj

+

(
−2D2 −D

D2

) D∑
i=1

D∑
j<i

LiLj

We then simplify this expression by introducing the constants αm and βm
and splitting into three terms, (65–67):

N0 −N1 =
D∑
i,j

αmLiLj (65)

αm =
βmD

2 −D
D2

(66)

βm =

−2 i < j

1 i = j

2 i > j

(67)

If we reassume that all nodes in M0 are equally sized, we can see
that, on average, N0 is greater than N1 by approximately Ln

2, though the
meaningfulness of that assertion is questionable. On the whole, (65) will
describe the difference in performance between any random network and a
symmetric network of equal node number and base pairs. The relationship
between random networks and their symmetric counterparts can be seen in
Figure 17.

Appendix C: Performance Considerations

In order to speed computation, it is considered best practice to vectorize
operations in algorithmic design. In the case of oligonucleotide analysis, this
involves avoiding time-intensive character vector comparison. We can see
this spelled out in the following two prominent cases.

DNA by Design: De novo Computational Framework 57

Figure 17 Difference in operation counts between random networks and their symmetric
counterparts (N0 − N1). Symmetric networks were obtained by summing averaging the size
of all nodes in a given random net, allowing for fractional base pairs. At node numbers D ∈
[1, 30], random lengths were assigned between 1 and 30 bp. At each D value, 100 trials were
run. A) The average behavior at each D value for Lmax = 30 bp (X marks) was subjected to
polynomial fit and determined to correspond to 1

3
L2

n(D− 1), where Ln is Lmax/2, or 15 bp.
Data points were obtained using (65) and are identical to data generated without the use of a
simplified expression [(50)–(57)]. B) The same experiment was performed and normalized to
the total number of base pairs according to (60), where B =

∑D
i Li ∼ DLn. Here the fit

line also behaves with 1
3
Ln(1 − 1

D
) relationship, which converges to 1

3
Ln for D � 1. C)

Experiments for values of Lmax ∈ [1, 100] were carried out in the same manner as B. Only
the average data are shown with their corresponding fit lines. The value of Lmax is inset on
lines every 10 bp.

C.1 Float Conversion

The storage of an oligonucleotide is typically done as a character array, for
example: ‘GGACTAG’, where the sequence is read left-to-right to represent
the 5’–3’ orientation. Unfortunately, no mathematical operations can be
performed on a character array. By contrast, a string converted to a number,

58 S. Vecchioni et al.

either an integer or float data type, can carry out comparisons through sub-
traction, allowing for a vectorized analysis of sequence composition. Through
experimentation (see Appendix C.3 below), double-precision floating point
numbers, ‘double’ in Matlab or ‘float’ in Python, demonstrate the shortest
nucleotide comparison times. To correspond with one-indexed programming
languages like Matlab, [‘ATGC’] can be converted to [1, 2, 3, 4]. In a zero-
indexed programming environment, we convert to [0, 1, 2, 3] to promote
efficient vectorization. To account for all nucleobase possibilities, we utilize
the following convention: [dA, rA = 1.0]; [dT = 2.0]; [dG, rG = 3.0]; [dC,
rC = 4.0]; [dC/dG, rC/rG, S = 5.0]; [dA/dT, rA/rT, W = 6.0], [rU = 7.0].

C.2 Comparison by Vector Subtraction

To compare substrings to character elements, a for loop iterates through
the array and uses a comparison method such as strcmp(). To identify the
complement of a nucleotide substring in a larger oligonucleotide array, we
utilize the following comparison matrix for WC and CC pairing conditions:

WC CC

′A′
′T ′
′G′
′C ′

:

′T ′
′A′
′C ′
′G′

′A′
′T ′
′G′
′C ′

:

′T ′
′A′
′C ′
′G,C ′

 (68)

This comparison algorithm uses two for loops, one to iterate through the
oligo array, and the second to iterate through the rule matrix to identify the
identity of the base and its possible complements using string comparison.
A second string comparison is then carried out to compare complementary
characters to the opposing oligonucleotide array. In this way, dimers can be
identified within an alignment frame.

A more efficient algorithm stores the oligonucleotide sequence as double-
precision floating point number (float64, or double) and subtracts each
‘nucleotide’ from the nth row of float64 rule matrix, where [‘A’,’T’,’G’,’C’]
is equivalent to [1,2,3,4]:

WC CC

1
2
3
4

:

2
1
4
3

1
2
3
4

:

2
1
4

4, 3

 (69)

DNA by Design: De novo Computational Framework 59

One loop is used to iterate through the oligonucleotide array. At each
base, the row corresponding to the nucleotide identity is subtracted from
the complement nucleotide. Where a value of 0 is reached, complementarity
is obtained. This eliminates a loop and both expensive character compar-
isons, speeding computation by two orders of magnitude (see Appendix C.3
below).

In Matlab, this operation utilizes a one-indexed adenine, whereby the first
row of the rule matrix in (69) is considered row 1. In a zero-indexed coding
environment such as Python, adenine will be converted to 0, and subtraction
of row 0 for nucleobase comparison will occur.

C.3 Performance Analysis

Analysis was performed in Matlab to identify the most efficient method
of nucleobase comparison. The time to perform a single comparison was
averaged across 108 iterations. Comparison of char vector ‘G’ with the second
element in ‘TTTATG’ cost an average of 471 ns.

By contrast, subtraction of row 2 from element 2 of the floating point
representation of the same sequence took on average 3.65 ns. Though utiliz-
ing less disk space, storing the sequence as a single precision floating point
number (float32, single) took longer, clocking at 3.89 ns. Finally, even though
the rows and columns of a matrix have integer values, storage as an integer
(int8, int) took 6.63 ns. These data can be seen in Table 7:

There are tens of thousands of nucleotide comparisons to analyze a
single DNA nanostructure (50). Any sequence optimization through iterative
algorithms will involve hundreds of millions to billions of comparisons. It is
therefore clear that a conversion to double-precision floating point arrays is
a critical feature for dimer search, complement generation, and nucleobase
identification algorithms, and can enable high-performance optimization of
DNA sequences for nanotechnology.

Table 7 Comparison efficiency of various Matlab data structures

Data Sequence Complementarity Average (xSlower)timeN/
Type Representation Rule Matrix Operation Time timeDouble

double [2, 2, 2, 1, 2, 3] [2, 1, 4, 3] 3.65 ns –

single [2, 2, 2, 1, 2, 3] [2, 1, 4, 3] 3.89 ns 1.06

int [2, 2, 2, 1, 2, 3] [2, 1, 4, 3] 6.63 ns 1.81

char [‘T’,’T’,’T’,’A’,’T’,’G’] [‘T’, ’A’, ’C’, ’G’] 472 ns 129

60 S. Vecchioni et al.

Figure 18 Average time to take a 5’–3’ sequence and use fliplr() to store it in 3’–5’
orientation in a Matlab floating point array. Operation carried out over 106 trials. For all
sequence lengths >1 nt, transposing the array took approximately 1 µs. Omitting the first
data point, the linear fit equation is approximately: 45 ns/nt+ 920 ns (R2 = 0.87).

C.4. Reverse Indexing

The tracking of base index inside an alignment frame is an operation requiring
relatively few floating point operations. When aligning two sequences to test
for complementarity, the usual practice on paper is to take a 5’–3’ oligo
and place it adjacent to a 3’–5’ sequence. Though this makes conceptual
sense, it requires that the user perform a flip operation on one oligo in
an environment where all oligos are stored in the 5’–3’ orientation. In a
programming environment, this requires matrix transposition, which uses a
relatively large number of floating point operations. An analysis of the time
to transpose a floating point ‘oligo’ array of varying length was carried out
over 106 iterations, and was determined to cost ∼1 µs per fliplr() operation
(Figure 18). A single nanostructure can have thousands of alignment frames;
over an iterative time scale, these transpositions will introduce significant
delays in sequence design algorithms.

To avoid gratuitous transposition of DNA arrays, we introduce reverse
indexing, whereby base position in complement strands can be tracked going
backwards from the end of the alignment frame. This allows the two oligos
of interest to remain in the 5’–3’ orientation. Indexing formulas of this type
can be found in (34)–(37) and are summarized in Tables 5–6.

Appendix D: Detailed Algorithm Design and Fitness
Evaluation

D.1 UI Component

A nanostructure is a struct() data type with N nodes. Each node is also a
data struct() with information about incoming and outgoing edges, sequence,

DNA by Design: De novo Computational Framework 61

length and a rule matrix which governs allowable mutations. These param-
eters are entered using a GUI, in which the geometry and sequence of each
node is manually specified, as well as its ability to be edited and internal
pairing regime. At this stage, certain regions can be restricted to WC or
CC parity; while other nodes can be specified as sticky ends by having no
complement, no incoming node connections, and uneditable sequences. The
user has quite a bit of flexibility over the types of sequences entered and the
ways that they connect, allowing for entry of complex nanostructures with
heterogeneous local design rules.

D.2 Optimization Criteria Setup

After the user specifies the geometric frame that will be optimized, the
model proceeds to the setup stage, in which a parallel pool GA iterator
is initialized and run with specific criteria. The runtime environment is
initialized with user-defined parameters covering the size and number of
solution populations, the size of fitness tournaments and the crossover and
mutation rates governing sequence diversity. In addition to standard GA
parameters, we introduce environmental variables which will affect the real-
time performance and assembly of the nanostructures themselves. Firstly, the
user will specify what base pairs are globally available for dimer analysis,
akin to specifying the presence or absence of environmental factors such as
silver and mercury cations, RNA bases, and orthogonal nucleotides. A global
ruleMatrix is established (69), which governs fitness function evaluation
across all nodes.

D.3 Iterative Optimization

Populations are built from collections of mutually-interacting solutions that
are separated from other populations. The number of total solutions tested is
the product of popSize and popNum. The model runs for a set number of iter-
ations, or generations, using the gen number as a stop criterion. To generate a
pop, the basic nanostructure frame is subjected to an initial, elevated mutation
rate, which causes all editable nodes to be subjected to near-randomization of
base pairs allowed in their corresponding ruleMatrix. Setting a low initial
mutation rate may be beneficial when continuing to optimize an already-
modeled set of sequences. After initializing the data structures and the first
generation pop, the model is ready for subsequent iteration. The GA iterator
performs the same operations for each cycle: sequence generation, fitness
calculation, and pop creation. Owing to the linearly-independent nature of

62 S. Vecchioni et al.

separate solution pools, populations are run in parallel using the parallel
computing toolbox in Matlab. Core allocation can be specified at the start
of the simulation.

D.3.1 Fitness score calculation
The fitness score is a weighted composite penalty comprised of several crite-
ria, namely: guanine repeats (‘GN’), GC repeats (‘SN’), AT repeats (‘WN’),
purine repeats (‘RN’), pyrimidine repeats (‘Yn’), nucleobase gaps (‘gapn’),
and heterostructure dimer size (‘DN’) (see Appendix B). The type of solution
will be influenced by the relative weight of these parameters. To allow for
user input, the variable dimerWeight is introduced, which corresponds to the
stringency of dimer size requirements. This parameter corresponds to the
dimer size that is equal in penalty to G3, S4, R4, and Y4. In the presence
of a gap criterion, a gap size exceeding the user-specified maximum is also
weighted similarly with dimers of size dimerWeight (dW). The fitness penalty
of the following parameters is identical: DdW, G3, S4, W4, R4, gap2. The YN

criterion is ignored.
For each solution, histograms of all dimers, guanine repeats, purine

repeats, nucleobase gaps, etc. are generated using the indexing and analytical
framework established in Section 2 and Appendix B. From these histograms,
GC, purine and pyrimidine repeats of size less than 4, guanine repeats
and dimers less than size 3, and allowable gaps are all pared from these
histograms. The remaining histogram bins are then subjected to a series of
exponential functions:

F =

nD∑
i≥3

cD,i10(i−2−dW) +

nR∑
i≥4

cR,i10(i−2) +

nW∑
i≥4

cW,i10(i−2)

+

nS∑
i≥4

cS,i10(i−2) +

nG∑
i≥3

cG,i10(i−1) +

ngap∑
i

cgap,i10i (70)

In (70), summation across each histogram bin occurs for repeats of size i,
starting at empirically-identified sizes and finishing at the maximum repeat,
or nX , for each parameter. The number of repeats at each size, ci, corresponds
to the histogram bin value at i. This number is multiplied by a decimal
exponent containing i and an adjustment value to match the weights of criteria
with different critical i values. A solution with better (fewer) repeats will have
a smaller fitness value F. As such, the global optimization problem is the
minimization of F. Pyrimidine repeats are omitted from the fitness function

DNA by Design: De novo Computational Framework 63

Figure 19 Graphical representation of dimer fitness hill. Each level is of size 10i for a dimer
of size i. Within each grade, the number of dimers of each size—the histogram bin count
cD,i— is the exponent constant. Here, f represents the multiplication factor, or relative weight,
of the given fitness characteristic. Different criteria will have different weights, seen in (70).

for redundancy, and GC repeats may be omitted for CC pairing environments
to allow polycytosine repeats (this may affect the helical angles and assembly
of the constituent nanostructure). Gaps are only included where specified by
the user.

Dimer fitness is adjusted by dW or dimerWeight as dimers are of lesser
relative importance compared with other types of repeats: a nanostructure
may assemble with a size 7 bp heterodimer, while it will not be able to form
a B-form duplex with a size 7 nt guanine repeat. The exponential is applied
in order to clearly differentiate between the steps in the fitness hill: 5 dimers
of size 8 bp are of lesser importance than 2 dimers of size 9 bp. By contrast,
10 dimers of size i will be equal in penalty to 1 dimer of size i + 1. In this
way, each level of the fitness hill is clearly segregated by repeat size, while the
repeat count (c) is weighed in a granular fashion within each step (Figure 19).

The full fitness function can be described in a compact sum, shown
in Figure 20. This graphical representation of the different fitness criteria
demonstrates the relationship between fitness criteria and their weights. It
can be seen that as other criteria pass their minimum penalties, the fitness hill
becomes less granular, as the contribution of heterodimers will predominate.
Selection of parameter dW by the user will determine the size of heterodimer
where this solution characteristic becomes more heavily penalized. A good
starting value for dW may be between 8 and 10.

The fitness function F for fitness criteria X = [(D)imer, pu(R)ine, (W)eak
pair, (S)trong pair, (G)uanine, nucleobase (gap)], repeat size i, repeat count

64 S. Vecchioni et al.

Figure 20 Schematic representation of fitness function (70). The fitness (F) of a solution
is comprised of several sequence design criteria (X): dimers (D), purine repeats (R), AT pair
repeats (W), GC pair repeats (S), guanine repeats (G), and nucleobase gaps (gap). Within each
criterion, there is a graded fitness hill with levels segregated by the exponential function c*10i

for repeat size i and histogram bin count cX,i. Levels marked in red are weighted equally. The
weights are controlled by adjustment factor fX . Each repeat type has a maximum recorded
value nX , and a minimum size Xmin, under which histogram bins are not counted.

cX,i, minimum repeat size Xmin, maximum repeat size nX , and adjustment
factor f may be expressed in compact sum form, as seen in Figure 20:

F =
∑
X

fX nX∑
i≥Xmin

10i(cX,i)

 fX

fD = 10(−dW−2)

fR, fW , fS = 10−2

fG = 10−1

fgap = 1

(71)

D.3.2 Creating a population for the next generation
Once the fitness scores for a current generation are calculated, these rankings
are used to populate the next generation. First, an elitism algorithm is exe-
cuted in which a specified number of solutions are copied without alteration
from the top of the fitness list. If the number of elites meets or exceeds the
population size, no optimization will occur. Once elites are copied, a specified
number of random solutions are generated where editable nodes are subject
to a pseudorandom number generator.

The remaining slots in the next generation pop are filled using tournament
style competition. Solutions are selected at random to fill a tournament

DNA by Design: De novo Computational Framework 65

of specified size, and the fittest individual is chosen. Ties are broken by
choosing the first of the solutions selected during tournament filling. A sec-
ond tournament is carried out, and the two best solutions are subject to a
crossover algorithm, in which editable sequence information is exchanged
with a specified probability. A random number is rolled r = [0, 1), and if
the crossover rate exceeds r, the nucleotides in template and complement
strands at that position are swapped using forward and reverse index values.
The two modified solutions are then subjected to nucleobase randomization at
a specified rate, where editable nucleotides are subjected to a random number
roll r = [0, 1). When the mutation rate exceeds the roll, a random base
is selected from that node’s ruleMatrix, and if a complement sequence is
available, a complementary base is selected at random from the allowable
complementary nucleotides in the same row of the ruleMatrix. In this way,
two new solutions are generated with information mostly conserved from
previous answers based on fitness calculation and tournaments. When there
is only one available slot left in the next generation pop, the first new solution
to be generated will be selected. Once the population is filled, the generation
number is advanced.

D.3.3 Repeat for F2 cross
When the last generation is reached for a given population Pj , fitness scores
are calculated and the best solutions are copied without alteration to a
separate population, F2. The best solutions from all Pj are collected and
subsequently optimized in the same manner. The F2 population is subjected
to the same runtime parameters as each of the feeder populations. The fittest
solution in the final F2 generation is designated as the end result of the
genetic algorithm. This type of forced migration, or gene flow, serves to
overcome fitness niches created through the steepness of the fitness landscape
by combining disparate solutions.

D.4 Data Analysis and Output

When specified, data analysis across the lifetime of the simulation can be
analyzed. In particular, the fitness scores and various metrics can be plotted
over iterations and compared with the final F2pop. The parameters displayed
are modular and may be chosen with some alteration to plot code. The
graphical interface is shown without alteration in Figures 19–21. Figure 21
displays logarithmic fitness data over the lifetime of the simulation. The
F2pop (bold) combines the best solutions from the feeder populations and is

66 S. Vecchioni et al.

Figure 21 Longitudinal fitness data, plotted on logarithmic axis. The F2pop (marked bold)
combines the best solutions of all other populations at the end of their respective simulations.
Subsequent optimization selects for the best traits of each of these populations and may arrive
at a further-optimized answer.

subject to intense initial competition, followed by slight incremental change
over the lifetime of the final simulation. Figures 22–23 show the magnitude
and frequency of repetitive segments in the nanostructures, with fitness cri-
teria (X) from (70)–(71). Repeat sizes are subjected to a weight function to
illustrate both the maximum repeat size Xn and the abundance of that repeat
cX,n. This function can be expressed as repeat size Xn with an additional
weight w = (0, 0.5]:

Xn + 0.5(1− ecX,n+1). (72)

Figure 24 shows the nucleobase similarity for all bases and all positions
between all members of a nanostructure population. The similarity calcula-
tion (S) for nanostructures (M) in a population (Pj) with total number (L) of
nucleotides (bi) at position M(i) can be expressed in the following way:

S =
1

L

N∑
u

N∑
v>u

L∑
i

g(Mu(i),Mv(i)) g(b1, b2)

{
1 if b1 − b2 = 0

0 otherwise
(73)

Graphical analyses can be utilized to tailor future simulations by ana-
lyzing the effects of competition over iterative time scales to select the
appropriate runtime parameters.

DNA by Design: De novo Computational Framework 67

Figure 22 Longitudinal dimer data plotted for F1pops Pj (colored lines) and F2pop (bold).
A) The largest dimer (Dn) of the fittest solution in each generation for all pops is shown. In
order to show more granular data, the frequency of the dimer cD,n is included in this smallest
dimer with the weight function (72): Dn + 0.5(1 − ecD,n+1). This function caps the weight
of the dimer toDn+0.5. B) The frequency of the largest dimer (cD,n) from A within a single
nanostructure is shown. As a result of the fitness function, dimer count cD,i for dimer size
Di greater than 10 is counted as equal in weight to a dimer of size Di+1, which causes most
frequencies to rapidly fall under 10. C) The least fit solution for each generation is plotted in
a similar fashion to A. It can be seen from these graphs, which are automatically displayed at
the end of simulation, that the F2pop far outperforms the other populations, and that where
feeder populations generally reduce the max dimer size Dn, the F2pop will primarily reduce
the histogram bin count cD,n for Dn.

68 S. Vecchioni et al.

Figure 23 Plots of maximum repeats (Xn) for varying criteria (X) over all generations for
all pops with weight function (72): Xn + 0.5(1 − ecX,n+1). As in Figure 19, the maximum
display value for a repeat of size Xn is Xn + 0.5. Criteria shown: A) single-strand purine
nucleotide (A,G) repeats (Rn); B) single-strand guanine nucleotide repeats (Gn); and C) weak
base pair (A:T) repeats (Wn). Due to the nature of the fitness function, these repeats rapidly
drop to the minimum recorded values and experience little change across the lifetime of the
simulation.

DNA by Design: De novo Computational Framework 69

Figure 24 Similarity statistics for all pops over all generations based on (73). A) Average
percentage of nucleotides that are identical within nodes across all individual solutions in the
population. B) Range between maximum and minimum similarity for all individual solutions
in the population at the given generation. C) Standard deviation of similarity scores between
all individual solution in the population at the given generation.

70 S. Vecchioni et al.

Appendix E: Runtime Parameter Analysis

When it comes to user experience with the genetic algorithm described here,
there are two main metrics that must be considered: fitness of the final best
solution, and time of simulation to generate the given solution. The user may
adjust the runtime parameters as they see fit in order to reach a high-quality
solution in a reasonable amount of time, but it is not always immediately
apparent what effect the changes will have. We investigate several parame-
ters and their effects on final solution fitness through statistical analysis of
repetitive tests using similar setup states.

E.1 Mutation Rate

A population which is subject to low mutation rate may receive beneficial
traits at a rate too slow to be useful to the user, while a population subject to
elevated mutation rates may not be able to retain these traits after developing
them in the first place. We perform statistical testing of the genetic algo-
rithm for a DAO variant nanostructure (see Section 4), recording fitness and
similarity statistics for ten simulations with each runtime setup (Figure 25).
Three mutation rates were utilized, 2%, 5% and 10%. Solutions produced
by both 2% and 10% mutation rates were both less diverse and less fit than
solutions produced in the 5% condition. The fitness of 5% mutation falls at the
lower extreme of the error bars for the other conditions, but the solutions are
consistently clustered in this higher-fitness region. Results from the 2% and
10% conditions were much more variable in final result, but more internally
similar. This suggests the mutation rates that are both too low and too high can
lead to fitness niche creation, preventing more optimal solution from being
found. It is evident that the computational model should therefore be run with
a mutation rate of around 5%.

E.2 Population Number and Elitism

A similar analysis was performed to extrapolate the relationship between pop-
ulation size and population number (Figure 26). Simulations were performed
for 200 solutions, segregated into varying numbers of populations (2,3,5, and
10). By definition, the number of elite solutions in each generation will have
an effect independent of actual population size, and in order to decouple the
effect of elite fraction in differing population scales, the experiments were
repeated with both exactly 5 elites and 10% elites (rounded to integer values).
Nanostructures with 10% elitism experienced much less change in fitness for

DNA by Design: De novo Computational Framework 71

Figure 25 Mutation rate over iterative testing for DAO nanostructure variant at three sepa-
rate mutation rates: 2%, 5% and 10% (low scores represent better solutions). All other runtime
parameters were set to default values. A) F2pop best fitness scores for and accompanying
error bars for ten separate instances of running the genetic algorithm. Better solutions for 5%
mutation, based on fitness function (71). B) Similarity calculations for the final generation of
F2pops based on (73) and accompanying error bars show that a medial mutation rate actually
increases population diversity compared with high and low rates.

Figure 26 Population size and number with varying rates of elitism for a DAO variant
nanostructure. Each data point represents the average of ten independent simulations. Each
simulation had 5% mutation and 200 total solutions divided into the number of populations
shown on the x-axis. All other runtime parameters were set to default values. To decouple
the effects of elitism from population size, the data were collected in two separate cases, one
where there were 5 elites in every generation, and again where 10% of the next generation
was an unaltered elite. Standard deviation was calculated for each data point (n = 10). A)
Average fitness scores (71) in the best solution for each of the ten independent F2pops. B)
Average similarity scores for terminal generation F2pops (73).

differing population size. By contrast, these populations became much less
internally similar as population sizes decreased (increasing population num-
ber). Simulations using 5 elite nanostructures experienced greater diversity as
population size dropped, but this value became asymptotic as the number of

72 S. Vecchioni et al.

elites occupied 25% of the total population. A sharp increase in overall fitness
(more negative fitness score) was exhibited at population numbers greater
than three. For both conditions, 5 populations outperformed data collected
from 2, 3 or 10 populations, with some question of statistical significance.
As a general starting point, the model can be run with 5 populations with
10% elitism for best end fitness and overall solution diversity. Increased
simulation times (generation number) may demonstrate better results in these
conditions due to diversity retention and relatively smaller fitness niches in
these conditions.

References

[1] Mathieu, F. et al. Six-helix bundles designed from DNA. Nano letters 5,
661–665, (2005).

[2] Zheng, J. et al. From molecular to macroscopic via the rational design
of a self-assembled 3D DNA crystal. Nature 461, 74, (2009).

[3] Wang, R., Palma, M., Penzo, E. and Wind, S. J. Lithographically
directed assembly of one-dimensional DNA nanostructures via bivalent
binding interactions. Nano Research 6, 409–417, (2013).

[4] Wang, R., Liu, W. and Seeman, N. C. Prototyping nanorod control: a
DNA double helix sheathed within a DNA six-helix bundle. Chemistry
& biology 16, 862–867, (2009).

[5] Rich, A. and Davies, D. R. A new two stranded helical structure:
polyadenylic acid and polyuridylic acid. Journal of the American
Chemical Society 78, 3548–3549, (1956).

[6] Rosenberg, J. M. et al. Double helix at atomic resolution. Nature 243,
150–154, (1973).

[7] Seeman, N. C., Sussman, J. L., Berman, H. M. and Kim, S. Nucleic acid
conformation: Crystal structure of a naturally occurring dinucleoside
phosphate (UpA). Nature New Biology 233, 90–92, (1971).

[8] Crick, F. and Watson, J. Molecular structure of deoxypentose nucleic
acids. Nature 171, 738–740, (1953).

[9] Wang, J. C. Helical repeat of DNA in solution. Proceedings of the
National Academy of Sciences 76, 200–203, (1979).

[10] Ono, A. et al. Specific interactions between silver(I) ions and cytosine-
cytosine pairs in DNA duplexes. Chem Commun (Camb), 4825–4827,
(2008).

DNA by Design: De novo Computational Framework 73

[11] Miyake, Y. et al. MercuryII-mediated formation of thymine-HgII-
thymine base pairs in DNA duplexes. J Am Chem Soc 128, 2172–2173,
(2006).

[12] Wang, A. H. J. et al. Molecular structure of a left-handed double helical
DNA fragment at atomic resolution. Nature 282, 680, (1979).

[13] Franklin, R. E. and Gosling, R. G. The structure of sodium thymonucle-
ate fibres. I. The influence of water content. Acta Crystallographica 6,
673–677, (1953).

[14] Leroy, J.-L., Guéron, M., Mergny, J.-L. and Hélène, C. Intramolecular
folding of a fragment of the cytosine-rich strand of telomeric DNA into
an i-motif. Nucleic acids research 22, 1600–1606, (1994).

[15] Sen, D. and Gilbert, W. Formation of parallel four-stranded complexes
by guanine-rich motifs in DNA and its implications for meiosis. Nature
334, 364, (1988).

[16] Seeman, N. C. Nucleic-Acid Junctions and Lattices. Journal of Theoret-
ical Biology 99, 237–247, (1982).

[17] Ding, B., Sha, R. and Seeman, N. C. Pseudohexagonal 2D DNA crystals
from double crossover cohesion. Journal of the American Chemical
Society 126, 10230–10231, (2004).

[18] Winfree, E., Liu, F. R., Wenzler, L. A. and Seeman, N. C. Design and
self-assembly of two-dimensional DNA crystals. Nature 394, 539–544,
(1998).

[19] Geary, C., Rothemund, P. W. and Andersen, E. S. RNA nanostructures.
A single-stranded architecture for cotranscriptional folding of RNA
nanostructures. Science 345, 799–804, (2014).

[20] Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns.
Nature 440, 297–302, (2006).

[21] Wang, X. et al. An Organic Semiconductor Organized into 3D DNA
Arrays by “Bottom-up” Rational Design. Angewandte Chemie Interna-
tional Edition 56, 6445–6448, (2017).

[22] Mao, C. D., Sun, W. Q. and Seeman, N. C. Designed two-dimensional
DNA Holliday junction arrays visualized by atomic force microscopy.
Journal of the American Chemical Society 121, 5437–5443, (1999).

[23] Dietz, H., Douglas, S. M. and Shih, W. M. Folding DNA into twisted
and curved nanoscale shapes. Science 325, 725–730, (2009).

[24] Zhang, Q. et al. DNA origami as an in vivo drug delivery vehicle for
cancer therapy. ACS Nano 8, 6633–6643, (2014).

74 S. Vecchioni et al.

[25] Pearson, A. C. et al. DNA origami metallized site specifically to form
electrically conductive nanowires. J Phys Chem B 116, 10551–10560,
(2012).

[26] Zhao, Z., Jacovetty, E. L., Liu, Y. and Yan, H. Encapsulation of gold
nanoparticles in a DNA origami cage. Angewandte Chemie International
Edition 50, 2041–2044, (2011).

[27] Seeman, N. C. De novo design of sequences for nucleic acid struc-
tural engineering. Journal of biomolecular structure and dynamics 8,
573–581, (1990).

[28] Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with
caDNAno. Nucleic acids research 37, 5001–5006, (2009).

[29] Zhu, J., Wei, B., Yuan, Y. and Mi, Y. UNIQUIMER 3D, a software sys-
tem for structural DNA nanotechnology design, analysis and evaluation.
Nucleic acids research 37, 2164–2175, (2009).

[30] Kearse, M. et al. Geneious Basic: an integrated and extendable desktop
software platform for the organization and analysis of sequence data.
Bioinformatics 28, 1647–1649, (2012).

[31] Oberortner, E., Cheng, J.-F., Hillson, N. J. and Deutsch, S. Streamlining
the design-to-build transition with build-optimization software tools.
ACS synthetic biology 6, 485–496, (2016).

[32] Zuker, M. Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic acids research 31, 3406–3415, (2003).

[33] PrimerQuestr program (IDT, Coralville, IA, USA, 2018).
[34] Saiki, R. K. in PCR technology 7–16 (Springer, 1989).
[35] Allawi, H. T. and SantaLucia, J. Thermodynamics and NMR of internal

G
⊙

T mismatches in DNA. Biochemistry 36, 10581–10594, (1997).
[36] Peyret, N., Seneviratne, P. A., Allawi, H. T. and SantaLucia, J.,

Jr. Nearest-neighbor thermodynamics and NMR of DNA sequences
with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38,
3468–3477, (1999).

[37] Kaur, H., Arora, A., Wengel, J. and Maiti, S. Thermodynamic, Coun-
terion, and Hydration Effects for the Incorporation of Locked Nucleic
Acid Nucleotides into DNA Duplexes. Biochemistry 45, 7347–7355,
(2006).

[38] Xia, T. et al. Thermodynamic Parameters for an Expanded Nearest-
Neighbor Model for Formation of RNA Duplexes with Watson-Crick
Base Pairs. Biochemistry 37, 14719–14735, (1998).

DNA by Design: De novo Computational Framework 75

[39] Nakano, S.-i., Fujimoto, M., Hara, H. and Sugimoto, N. Nucleic acid
duplex stability: influence of base composition on cation effects. Nucleic
acids research 27, 2957–2965, (1999).

[40] Owczarzy, R., Moreira, B. G., You, Y., Behlke, M. A. and Walder, J. A.
Predicting stability of DNA duplexes in solutions containing magnesium
and monovalent cations. Biochemistry 47, 5336–5353, (2008).

[41] Vecchioni, S., Capece, M. C., Toomey, E., Rothschild, L. and Wind,
S. J. Methods of Synthesis and Characterization of Conductive DNA
Nanowires Based on Metal Ion-Mediated Base Pairing for Single-
Molecule Electronics. Journal of Self-Assembly and Molecular Elec-
tronics (SAME) 6, 61–90, (2018).

[42] Dairaku, T. et al. Structure Determination of an AgI-Mediated Cytosine–
Cytosine Base Pair within DNA Duplex in Solution with 1H/15N/109Ag
NMR Spectroscopy. Chemistry-A European Journal 22, 13028–13031,
(2016).

[43] Torigoe, H. et al. Thermodynamic and structural properties of the spe-
cific binding between Ag(+) ion and C:C mismatched base pair in
duplex DNA to form C-Ag-C metal-mediated base pair. Biochimie 94,
2431–2440, (2012).

[44] Holland, J. H. Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. (MIT press, 1992).

[45] Konak, A., Coit, D. W. and Smith, A. E. Multi-objective optimization
using genetic algorithms: A tutorial. Reliability Engineering & System
Safety 91, 992–1007, (2006).

[46] Wu, J.-S., Lee, C., Wu, C.-C. and Shiue, Y.-L. Primer design using
genetic algorithm. Bioinformatics 20, 1710–1717, (2004).

[47] Rinker, S., Ke, Y., Liu, Y., Chhabra, R. and Yan, H. Self-assembled
DNA nanostructures for distance-dependent multivalent ligand–protein
binding. Nature nanotechnology 3, 418, (2008).

[48] Liu, D., Park, S. H., Reif, J. H. and LaBean, T. H. DNA nanotubes
self-assembled from triple-crossover tiles as templates for conductive
nanowires. Proceedings of the National Academy of Sciences 101,
717–722, (2004).

[49] Seeman, N. C. DNA nicks and nodes and nanotechnology. Nano letters
1, 22–26, (2001).

[50] Fardian-Melamed, N. et al. Electronic Level Structure of Silver-
Intercalated Cytosine Nanowires. Nano Letters, (2020).

76 S. Vecchioni et al.

[51] Livshits, G. I. et al. Long-range charge transport in single G-quadruplex
DNA molecules. Nature nanotechnology 9, 1040–1046, (2014).

[52] Hush, N. and Cheung, A. S. Ionization potentials and donor properties
of nucleic acid bases and related compounds. Chemical Physics Letters
34, 11–13, (1975).

	Use of Computational Modeling in DNA Sequence Design
	DNA Hybridization by Design
	DNA Thermodynamics
	Sequence Optimization Via Genetic Algorithms

	Computational Analysis of Nanostructure Composition
	Nanostructures, Nodes and Sequences
	Heterostructures
	Other Sequence Design Criteria
	Gap analysis: `gapN'
	Purines and pyrimidines: `R4' and `Y4'
	GC/AT: `S4'/ `W4'
	Guanine repeats: `G3'

	Computational Design of Nanostructures using a Genetic Algorithm
	Generic Workflow
	Nanostructure Optimization

	Experimental Validation: Algorithmic Design of a Non-canonical DNA Nanostructure
	Nanostructure Design Frame
	Computational Modeling
	Experimental Results

	Conclusions

