Silver, Bi2Te3 and Antimonene Based Surface Plasmon Resonance Sensor for Enhancement of Sensitivity
DOI:
https://doi.org/10.13052/jgeu0975-1416.1124Keywords:
SPR, sensitivity, Kretschmann, SNR, figure of merit, BK7Abstract
A biosensor based on the surface plasmon resonance has been theoretically analyzed. The proposed surface plasmon resonance (SPR) sensor consists of a hybrid structure with Ag/Bismuth telluride (Bi2Te3)/Antimonene (An)/Sensing medium layers. BK7 is used as the main coupling prism. The sensor’s sensitivity performance gets enhanced by depositing Bi2Te3 and antimonene layers over the conventional sensor’s configuration. The Ag, Bi2Te3, and antimonene layer optimized thickness were taken as 45 nm, 0.5 nm, and 0.5 nm, respectively. The proposed sensor has been working on attenuated total reflection. The proposed sensor shows the highest sensitivity of 154 degree/RIU, a signal-to-noise ratio of 0.19 degrees-1 with a figure of merit of 29.26 RIU-1. The proposed SPR sensor can be used for bio analyte and biochemical detection.
Downloads
References
J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528–539, 2003, doi: 10.1007/s00216-003-2101-0.
P. Damborský, J. Švitel, and J. Katrlík, “Optical biosensors,” Essays Biochem., vol. 60, no. 1, pp. 91–100, 2016, doi: 10.1042/EBC20150010.
B. Karki, A. Uniyal, A. Pal, and V. Srivastava, “Advances in Surface Plasmon Resonance-Based Biosensor Technologies for Cancer Cell Detection,” Int. J. Opt., vol. 2022, 2022, doi: 10.1016/j.bios.2021.113767.
J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: Physics and applications,” J. Phys. D. Appl. Phys., vol. 45, no. 11, 2012, doi: 10.1088/0022-3727/45/11/113001.
Y. Kumar, R. Mishra, E. Panwar, J. Kaur, and R. Panwar, “Design, optimization and critical analysis of graphene based surface plasmon resonance sensor for DNA hybridization,” Opt. Quantum Electron., vol. 51, no. 10, 2019, doi: 10.1007/s11082-019-2057-8.
A. Uniyal, G. Srivastava, A. Pal, S. Taya, and A. Muduli, “Recent Advances in Optical Biosensors for Sensing Applications: a Review,” Plasmonics, no. 0123456789, 2023, doi: 10.1007/s11468-023-01803-2.
E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons by light,” Z. Naturforsch, vol. 23, no. a, pp. 2135–2136, 1968.
R. Kashyap et al., “Enhanced biosensing activity of bimetallic surface plasmon resonance sensor,” Photonics, vol. 6, no. 4, 2019, doi: 10.3390/photonics6040108.
A. Nisha, P. Maheswari, P. M. Anbarasan, K. B. Rajesh, and Z. Jaroszewicz, “Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni),” Opt. Quantum Electron., vol. 51, no. 1, 2019, doi: 10.1007/s11082-018-1726-3.
A. H. M. Almawgani, P. Sarkar, A. Pal, G. Srivastava, and A. Uniyal, “Titanium Disilicide, Black Phosphorus – Based Surface Plasmon Resonance Sensor for Dengue Detection,” Plasmonics, no. 0123456789, 2023, doi: 10.1007/s11468-023-01856-3.
A. Uniyal, B. Chauhan, A. Pal, and Y. Singh, “Surface plasmon biosensor based on Bi2
Te3
antimonene heterostructure for the detection of cancer cells,” Appl. Opt., vol. 61, no. 13, pp. 3711–3719, 2022.
Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys., vol. 14, no. June, p. 102477, 2019, doi: 10.1016/j.rinp.2019.102477.
A. Uniyal, S. Gotam, T. Ram, B. Chauhan, A. Jha, A. Pal. (2022), “Next Generation Ultra-sensitive Surface Plasmon Resonance Biosensors”. In: Khare, N., Tomar, D.S., Ahirwal, M.K., Semwal, V.B., Soni, V. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2022. Communications in Computer and Information Science, vol 1762, 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-24352-3_31.
A. Uniyal, A. Pal, and B. Chauhan, “Long-Range Spr Sensor Employing Platinum Diselenide and Cytop Nanolayers Giving Improved Performance,” Phys. B Condens. Matter, vol. 649, no. September 2022, p. 414487, 2022, doi: 10.2139/ssrn.4230023.
B. Karki, A. Uniyal, G. Srivastava, and A. Pal, “Black Phosphorous and Cytop Nanofilm-Based Long-Range SPR Sensor with Enhanced Quality Factor,” J. Sensors, vol. 2023, 2023, doi: 10.1155/2023/2102915.
Y. Singh and S. K. Raghuwanshi, “Titanium dioxide (TiO2
) coated optical fiber-based SPR sensor in near-infrared region with bimetallic structure for enhanced sensitivity,” Optik (Stuttg)., vol. 226, no. P1, p. 165842, 2021, doi: 10.1016/j.ijleo.2020.165842.
S. Singh, A. K. Sharma, P. Lohia, D. K. Dwivedi, V. Kumar, and P. K. Singh, “Simulation study of reconfigurable surface plasmon resonance refractive index sensor employing bismuth telluride and MXene nanomaterial for cancer cell detection,” Phys. Scr., vol. 98, no. 2, 2023, doi: 10.1088/1402-4896/acb023.
B. Karki, G. Ansari, A. Uniyal, and V. Srivastava, “PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor,” J. Comput. Electron., no. 0123456789, 2022, doi: 10.1007/s10825-022-01975-w.
N. Mudgal, A. Saharia, A. Agarwal, J. Ali, P. Yupapin, and G. Singh, “Modeling of highly sensitive surface plasmon resonance (SPR) sensor for urine glucose detection,” Opt. Quantum Electron., vol. 52, no. 6, pp. 1–14, 2020, doi: 10.1007/s11082-020-02427-0.
P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE PHOTONICS Technol. Lett., vol. 25, no. 22, pp. 2156–2159, 2013.
M. Moznuzzaman, M. Rafiqul Islam, M. Biplob Hossain, and I. Mustafa Mehedi, “Modeling of highly improved SPR sensor for formalin detection,” Results Phys., vol. 16, no. September 2019, p. 102874, 2020, doi: 10.1016/j.rinp.2019.102874.
N. Mudgal, A. Saharia, A. Agarwal, and G. Singh, “ZnO and Bi-metallic (Ag–Au) Layers Based Surface Plasmon Resonance (SPR) Biosensor with BaTiO3
and Graphene for Biosensing Applications,” IETE J. Res., 2020, doi: 10.1080/03772063.2020.1844074.