Fractals as Julia and Mandelbrot Sets via S-iteration
DOI:
https://doi.org/10.13052/jgeu0975-1416.1222Keywords:
Fractals, Julia set, mandelbrot set, escape criteriaAbstract
To understand the phenomena of expanding symmetries Fractals patterns are an important tool which exhibit similar patterns for different scales. In the present paper, establishing an escape criteria by using S-iteration process to visualize fractals namely Julia and Mandelbrot sets for the function F(w)=aewp+c where c,a∈ C and p≥2. The result obtain is a generalization of the existing algorithm and technique providing fractals for different parameter values. Also, the time taken to obtain fractals for different parameters by using computer software MATLAB is computed in seconds.
Downloads
References
Weibel, E. R. (1991). Fractal geometry: a design principle for living organisms. American Journal of Physiology-Lung Cellular and Molecular Physiology, 261(6), L361–L369.hrefhttps:/doi.org/10.1152/ajplung.1991.261.6.L361 [CrossRef]
Mandelbrot, Benoit B., and Benoit B. Mandelbrot. The fractal geometry of nature. Vol. 1. New York: WH freeman, 1982.
Barcellos, Anthony. “Fractals Everywhere. By Michael Barnsley.” The American Mathematical Monthly 97.3 (1990): 266-268.hrefhttps:/doi.org/10.1080/00029890.1990.11995589 [CrossRef]
Cohen, N. (1997, May). Fractal antenna applications in wireless telecommunications. In Professional Program Proceedings. Electronic Industries Forum of New England (pp. 43–49). IEEE.
Madaan, A., Bhatia, M.,and Hooda, M. (2018). Implementation of image compression and cryptography on fractal images. In Advances in Data and Information Sciences: Proceedings of ICDIS-2017, Volume 1 (pp. 49–61). Springer Singapore.hrefhttps:/doi.org/10.1007/978-981-10-8360-0_5 [CrossRef]
Abbas, M., and Nazir, T. (2014). Some new faster iteration process applied to constrained minimization and feasibility problems.hrefhttp:/hdl.handle.net/2263/39674 [CrossRef]
Tomar, A. N. I. T. A., et al. “Mandelbrot fractals using fixed-point technique of sine function.” Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. Vol. 48. 2022.hrefhttps:/doi.org/10.30546/2409-4994.48.2022.194214 [CrossRef]
Abbas, M., Iqbal, H., and De la Sen, M. (2020). Generation of Julia and Mandelbrot sets via fixed points. Symmetry, 12(1), 86.hrefhttps:/doi.org/10.3390/sym12010086 [CrossRef]
Husain, A., Nanda, M. N., Chowdary, M. S., and Sajid, M. (2022). Fractals: an eclectic survey, part-I. Fractal and Fractional, 6(2), 89.hrefhttps:/doi.org/10.3390/fractalfract6020089 [CrossRef]
Prajapati, D. J., Rawat, S., Tomar, A., Sajid, M., and Dimri, R. C. (2022). A brief study on Julia sets in the dynamics of entire transcendental function using Mann iterative scheme. Fractal and Fractional, 6(7), 397.hrefhttps:/doi.org/10.3390/fractalfract6070397 [CrossRef]
Shatanawi, W., Bataihah, A., and Tallafha, A. (2020). Four-step iteration scheme to approximate fixed point for weak contractions. Comput. Mater. Contin, 64, 1491–1504.
Shahid, A. A., Nazeer, W., and Gdawiec, K. (2021). The Picard-Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets. Monatsh Math, 195, 565–584.hrefhttps:/doi.org/10.1007/s00605-021-01591-z [CrossRef]
Antal, S., Tomar, A., Prajapati, D. J., and Sajid, M. (2021). Fractals as Julia sets of complex sine function via fixed point iterations. Fractal and Fractional, 5(4), 272.hrefhttps:/doi.org/10.3390/fractalfract5040272 [CrossRef]
Qi, H., Tanveer, M., Nazeer, W., and Chu, Y. (2020). Fixed point results for fractal generation of complex polynomials involving sine function via non-standard iterations. IEEE Access, 8, 154301–154317.
Cho, S. Y., Shahid, A. A., Nazeer, W., and Kang, S. M. (2016). Fixed point results for fractal generation in Noor orbit and s-convexity. SpringerPlus, 5, 1-16.hrefhttps:/doi.org/10.1186/s40064-016-3530-5 [CrossRef]
Tassaddiq, A., Tanveer, M., Azhar, M., Arshad, M., and Lakhani, F. (2023). Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme. Fractal and Fractional, 7(1), 76.hrefhttps:/doi.org/10.3390/fractalfract7010076 [CrossRef]
Tomar, Anita, et al. “Fractals as Julia and Mandelbrot Sets of Complex Cosine Functions via Fixed Point Iterations.” Symmetry15.2 (2023): 478.hrefhttps:/doi.org/10.3390/sym15020478 [CrossRef]
Shahid, A.A., Nazeer, W. and Gdawiec, K. The Picard–Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets. Monatsh Math 195, 565–584 (2021).hrefhttps:/doi.org/10.1007/s00605-021-01591-z [CrossRef]
Özgür, Nihal, Swati Antal, and Anita Tomar. “Julia and Mandelbrot sets of transcendental function via Fibonacci-Mann iteration.” Journal of Function Spaces 2022 (2022).hrefhttps:/doi.org/10.1155/2022/2592573 [CrossRef]
Agarwal, R. P., O Regan, D., and Sahu, D. (2007). Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. Journal of Nonlinear and convex Analysis, 8(1), 61.
Julia, G. (1918). Mémoire sur l’itération des fonctions rationnelles. Journal de mathématiques pures et appliquées, 1, 47–245.
Devaney, R. L. (2018). A first course in chaotic dynamical systems: theory and experiment. CRC Press.
Mandelbrot, B. B., and Mandelbrot, B. B. (1982). The fractal geometry of nature (Vol. 1). New York: WH freeman.
Noor, M. A. (2000). New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and applications, 251(1), 217-229.hrefhttps:/doi.org/10.1006/jmaa.2000.7042 [CrossRef]