Trustworthy AI in Biometrics: A Comprehensive Review of Trends and Challenges
DOI:
https://doi.org/10.13052/jgeu0975-1416.1315Keywords:
Trustworthiness, bias, explainability, biometrics, security, performanceAbstract
Deep Learning (ML) and Artificial Intelligence (AI) are rapidly spreading over many application domains. However, the creation of intelligent systems is constrained by inherent flaws in the learning algorithms that are employed. One major barrier to the application of these techniques is the unpredictable nature of model performance. The reliability of a model is determined by its capacity to remove biases, elucidate findings, and adapt to changes in input data. The idea of trustworthy AI uses a variety of machine learning techniques to explain a model’s decision-making process, hence boosting user confidence in the model’s output. The significance of reliable AI in the context of biometrics is the main topic of this study. Our survey identifies the several types of reliable AI that can be used to increase the dependability of the choices made.
Downloads
References
Abdullahi, S. B., Khunpanuk, C., Bature, Z. A., Chiroma, H., Pakkaranang, N., Abubakar, A. B., and Ibrahim, A. H. (2022). Biometric information recognition using artificial intelligence algorithms: A performance comparison. IEEE Access, 10, 49167–49183. https://doi.org/10.1109/ACCESS.2022.3179315.
Alshazly, H., Linse, C., Barth, E., Idris, S. A., and Martinetz, T. (2021). Towards explainable ear recognition systems using deep residual networks. IEEE Access, 9, 122254–122273. https://doi.org/10.1109/ACCESS.2021.3109899.
Aquino, G., Costa, M. G., and Costa Filho, C. F. (2022). Explaining one-dimensional convolutional models in human activity recognition and biometric identification tasks. Sensors, 22(15), 5644. https://doi.org/10.3390/s22155644.
Bowyer, K. W., King, M. C., Scheirer, W. J., and Vangara, K. (2020). The “criminality from face” illusion. IEEE Transactions on Technology and Society, 1(4), 175–183. https://doi.org/10.1109/TTS.2020.3013039.
Butt, M. A., Qayyum, A., Ali, H., Al-Fuqaha, A., and Qadir, J. (2023). Towards secure private and trustworthy human-centric embedded machine learning: An emotion-aware facial recognition case study. Computers & Security, 125, 103058. https://doi.org/10.1016/j.cose.2022.103058.
Cascone, L., Pero, C., and Proença, H. (2023). Visual and textual explainability for a biometric verification system based on piecewise facial attribute analysis. Image and Vision Computing, 132, 104645. https://doi.org/10.1016/j.imavis.2023.104645.
Cavazos, J. G., Phillips, P. J., Castillo, C. D., and O’Toole, A. J. (2020). Accuracy comparison across face recognition algorithms: Where are we on measuring race bias? IEEE Transactions on Biometrics, Behavior, and Identity Science, 3(1), 101–111. https://doi.org/10.1109/TBIOM.2020.2965940.
Chen, Y. Y., Jhong, S. Y., Hsia, C. H., and Hua, K. L. (2021). Explainable AI: A multispectral palm-vein identification system with new augmentation features. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(3s), 1–21. https://doi.org/10.1145/3472220.
Curtis, S., Belli, D., Alanoca, S., Bora, A., Miailhe, N., and Lannquist, Y. (2021). Bridging the trust gaps in biometrics. Biometric Technology Today, 2021(3), 5–8. https://doi.org/10.1016/S0969-4765(21)00041-4.
Drozdowski, P., Rathgeb, C., Dantcheva, A., Damer, N., and Busch, C. (2020). Demographic bias in biometrics: A survey on an emerging challenge. IEEE Transactions on Technology and Society, 1(2), 89–103. https://doi.org/10.1109/TTS.2020.2992349.
Giudici, P., Centurelli, M., and Turchetta, S. (2023). Artificial intelligence risk measurement. Expert Systems with Applications, 121220. https://doi.org/10.1016/j.eswa.2022.121220.
Gumaei, A., Sammouda, R., Al-Salman, A. M. S., and Alsanad, A. (2019). Anti-spoofing cloud-based multi-spectral biometric identification system for enterprise security and privacy-preservation. Journal of Parallel and Distributed Computing, 124, 27–40. https://doi.org/10.1016/j.jpdc.2018.10.006.
Han, H., and Liu, X. (2022). The challenges of explainable AI in biomedical data science. BMC Bioinformatics, 22(12), 1–3. https://doi.org/10.1186/s12859-021-04492-0.
Irshad, A., Usman, M., Chaudhry, S. A., Bashir, A. K., Jolfaei, A., and Srivastava, G. (2020). Fuzzy-in-the-loop-driven low-cost and secure biometric user access to server. IEEE Transactions on Reliability, 70(3), 1014–1025. https://doi.org/10.1109/TR.2020.2978458.
Jain, A. K., Deb, D., and Engelsma, J. J. (2021). Biometrics: Trust, but verify. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(3), 303–323. https://doi.org/10.1109/TBIOM.2021.3063306.
Jeon, W. S., and Rhee, S. Y. (2017). Fingerprint pattern classification using convolution neural network. International Journal of Fuzzy Logic and Intelligent Systems, 17, 170–176. https://doi.org/10.5391/IJFIS.2017.17.3.170.
Kaur, D., Uslu, S., Rittichier, K. J., and Durresi, A. (2022). Trustworthy artificial intelligence: A review. ACM Computing Surveys (CSUR), 55(2), 1–38. https://doi.org/10.1145/3494602.
Khairnar, S., Gite, S., Kotecha, K., and Thepade, S. D. (2023). Face liveness detection using artificial intelligence techniques: A systematic literature review and future directions. Big Data and Cognitive Computing, 7(1), 37. https://doi.org/10.3390/bdcc7010037.
Khan, R. A., Meyer, A., Konik, H., and Bouakaz, S. (2019). Saliency-based framework for facial expression recognition. Frontiers of Computer Science, 13, 183–198. https://doi.org/10.1007/s11704-018-7168-1.
Korgialas, C., Pantraki, E., Bolari, A., Sotiroudi, M., and Kotropoulos, C. (2023). Face aging by explainable conditional adversarial autoencoders. Journal of Imaging, 9(5), 96. https://doi.org/10.3390/jimaging9050096.
Lai, K., Oliveira, H. C., Hou, M., Yanushkevich, S. N., and Shmerko, V. P. (2020). Risk, trust, and bias: Causal regulators of biometric-enabled decision support. IEEE Access, 8, 148779–148792. https://doi.org/10.1109/ACCESS.2020.3015710.
Li, B., Qi, P., Liu, B., Di, S., Liu, J., Pei, J., and Zhou, B. (2023). Trustworthy AI: From principles to practices. ACM Computing Surveys (CSUR), 55(9), 1–46. https://doi.org/10.1145/3527164.
Lin, Y. S., Liu, Z. Y., Chen, Y. A., Wang, Y. S., Chang, Y. L., and Hsu, W. H. (2021). xCos: An explainable cosine metric for face verification task. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(3s), 1–16. https://doi.org/10.1145/3465027.
Merhav, N. (2018). Ensemble performance of biometric authentication systems based on secret key generation. IEEE Transactions on Information Theory, 65(4), 2477–2491. https://doi.org/10.1109/TIT.2018.2877179.
Moraes, T. G., Almeida, E. C., and de Pereira, J. R. L. (2021). Smile, you are being identified! Risks and measures for the use of facial recognition in (semi-) public spaces. AI and Ethics, 1(2), 159–172. https://doi.org/10.1007/s43681-020-00018-9.
Nagpal, S., Singh, M., Narain, S., and Bhatnagar, S. (2023). Privacy-enabled biometric authentication using deep learning. Computers & Security, 125, 103014. https://doi.org/10.1016/j.cose.2022.103014.
Nanni, L., Brahnam, S., and Lumini, A. (2020). Deep learning for ear biometrics: A survey. Neurocomputing, 383, 107–120. https://doi.org/10.1016/j.neucom.2019.11.002.
Nwoye, C. I., and Thompson, K. A. (2020). Facial recognition technology in modern society: Challenges and legal implications. International Journal of Law and Information Technology, 28(2), 187–213. https://doi.org/10.1093/ijlit/eaaa010.
Patel, V. M., Smith, L. N., Guerra, L. M., Nasrabadi, N. M., and Chellappa, R. (2019). Automatic target recognition in forward-looking infrared imagery: A survey. IEEE Access, 7, 104379–104388. https://doi.org/10.1109/ACCESS.2019.2931598.
Siddiqui, S., Naseer, S., Rana, A., and Afzal, M. (2021). A survey of deep learning techniques for biometric identification. Journal of King Saud University-Computer and Information Sciences, 33(10), 1284–1292. https://doi.org/10.1016/j.jksuci.2019.09.005.
Singh, S., Singhal, A., and Jain, A. (2021). Face recognition with mask using deep learning techniques. Journal of Ambient Intelligence and Humanized Computing, 12, 9435–9446. https://doi.org/10.1007/s12652-020-02808-8.
Sousa, A., Salami, H., and Soltanalian, M. (2021). Adversarial robustness of biometric recognition: A comprehensive survey. IEEE Transactions on Artificial Intelligence, 3(4), 611–628. https://doi.org/10.1109/TAI.2021.3050510.
Uluturk, T. E., Uygun, E., and Yildiz, S. (2023). Face anti-spoofing by using a deep multi-scale neural network architecture. Neural Computing and Applications, 35, 5145–5161. https://doi.org/10.1007/s00521-022-08073-4.
Vanarase, T., Koike, K., and Hsu, Y. (2023). Fairness in facial recognition: Do race and gender affect the accuracy of commercial automatic face recognition algorithms? IEEE Access, 11, 5719–5736. https://doi.org/10.1109/ACCESS.2022.3234699.
Wang, M., Hu, W., and Zhao, Q. (2022). Privacy-preserving multimodal biometric recognition in cloud environments based on federated learning. IEEE Transactions on Information Forensics and Security, 17, 426–438. https://doi.org/10.1109/TIFS.2021.3111711.
Weerasinghe, T. U., Abhayasinghe, N., and Dias, J. (2021). A comparative study on feature extraction approaches for biometric iris recognition using deep learning. Journal of Imaging, 7(9), 156. https://doi.org/10.3390/jimaging7090156.
Wu, Y., Wang, R., He, R., and Tan, T. (2022). Robustness and explainability of age and gender recognition in the wild using deep convolutional networks. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(3), 336–347. https://doi.org/10.1109/TBIOM.2022.3162746.
Yadav, K., and Singh, R. (2023). Biometric recognition using Explainable AI: Opportunities, challenges, and future directions. Journal of Information Security and Applications, 74, 103475. https://doi.org/10.1016/j.jisa.2022.103475.
Yin, F., Liu, X., Zhang, X., and Ma, L. (2021). A lightweight convolutional neural network for 2D gait recognition in biometric security systems. IEEE Access, 9, 133481–133495. https://doi.org/10.1109/ACCESS.2021.3114609.
Zeng, W., and Liu, H. (2021). Privacy-preserving biometric authentication and verification with secure multiparty computation. IEEE Transactions on Information Forensics and Security, 16, 3856–3871. https://doi.org/10.1109/TIFS.2021.3076645.
Zhang, J., Duan, J., and Xu, W. (2022). Biometric recognition using wearable devices: A comprehensive survey. IEEE Internet of Things Journal, 9(3), 1561–1579. https://doi.org/10.1109/JIOT.2021.3074683.
Zhao, Z., Zhang, Z., and Zhou, Z. (2021). Towards adversarially robust biometric authentication systems: A survey. IEEE Transactions on Biometrics, Behavior, and Identity Science, 3(4), 351–365. https://doi.org/10.1109/TBIOM.2020.2995995.
Zheng, Y., Huang, Z., and He, Y. (2023). AI-enabled continuous biometric authentication: A review of advances, challenges, and opportunities. Pattern Recognition Letters, 164, 129–140. https://doi.org/10.1016/j.patrec.2023.01.012.
Zhou, F., Wu, X., and Zhao, S. (2022). Real-time iris biometric recognition using deep learning-based video sequence processing. Neural Networks, 151, 183–195. https://doi.org/10.1016/j.neunet.2022.04.019.
Zou, X., Wang, Y., and Jin, R. (2023). Multimodal biometric authentication via 3D convolutional neural networks and facial gesture recognition. Pattern Recognition, 133, 108837. https://doi.org/10.1016/j.patcog.2022.108837.
Zhou, K., and Ren, J. (2018). PassBio: Privacy-preserving user-centric biometric authentication. IEEE Transactions on Information Forensics and Security, 13(12), 3050–3063. https://doi.org/10.1109/TIFS.2018.2856975.
Zhu, L., Zhang, C., Xu, C., Liu, X., and Huang, C. (2018). An efficient and privacy-preserving biometric identification scheme in cloud computing. IEEE Access, 6, 19025–19033. https://doi.org/10.1109/ACCESS.2018.2820382.
Zhang, H., Li, S., Shi, Y., and Yang, J. (2019). Graph fusion for finger multimodal biometrics. IEEE Access, 7, 28607–28615. https://doi.org/10.1109/ACCESS.2019.2899328.