Point Measurement Techniques and Radar Remote Sensing Technique Using for Soil Moisture Estimation: A Literature Review
DOI:
https://doi.org/10.13052/jgeu0975-1416.924Keywords:
Dielectric techniques, frequency domain reflectometry, neutron scattering, soil moisture, thermo gravimetric, time domain reflectometry, synthetic-aperture radar (SAR).Abstract
In spite of the fact that previous researchers have utilized different systems
of moisture content assurance of soils. In this specific situation, analysts
have built up a few systems for estimating the soil moisture eg., thermo
gravimetric, neutron dissipating, soil resistivity, dielectric methods and Radar
Remote Sensing method using SAR (Synthetic-aperture radar) images. Be
that as it may, these methods are very mind boggling, costly (because of very
intricate hardware and gear) and henceforth past the span of many. This audit
accentuates that why it winds up basic to assess different techniques utilized
by the analysts for assurance of the soil moisture. Likewise, a necessity for
finding new soil moisture estimation methods or altering the current strategies
has been surveyed.
Downloads
References
Engman ET. Applications of Microwave Remote Sensing of Soil Mois-
ture for Water Resources and Agriculture. Remote Sens Environ. 1991;
(2–3): 213–226p.
Srivastava HS, Patel P, Navalgund RR. How Far SAR has Fulfilled Its
Expectation for Soil Moisture Retrieval. Asia-Pacific Remote Sensing
Symposium. 2006; 641001–641001-12
SU, S. L., Singh, D. N., and Baghini, M. S. (2014). A critical review of
soil moisture measurement. Measurement, 54, 92–105.
Chamoli, V., Prakash, R., Vidyarthi, A., and Ray, A. (2017, Novem-
ber). Sensitivity of NavIC signal for soil moisture variation. In 2017
International Conference on Emerging Trends in Computing and Com-
munication Technologies (ICETCCT) (pp. 1–4). IEEE.
Pandey, J., Prakash, R., Ray, A., Chamoli, V., and Vidyarthi, A. (2019,
March). Study of GPS C/No ratio for retrieval of Surface Soil Moisture.
In 2019 International Conference on Signal Processing and Communi-
cation (ICSC) (pp. 213–216). IEEE.
Pandey, J., Chamoli, V., and Prakash, R. (2020). A Review: Soil
Moisture Estimation Using Different Techniques. In Intelligent Com-
munication, Control and Devices (pp. 105–111). Springer, Singapore.
Chamoli, V., Prakash, R., Vidyarthi, A., and Ray, A. (2020, July). Anal-
ysis of NavIC Multipath Signal Sensitivity for Soil Moisture in Presence
of Vegetation. In International Conference on Innovative Computing
and Communications (pp. 353–364). Springer, Singapore.
D.A. Robinson, C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B.
Jones, R. Knight, (2008). Soil moisture measurement for ecological and
hydrological moistureshed-scale observatories: a review, VadoseZone J.
(1), 358–389.
Prakash, R., Singh, D. and Pathak, N.P., “Microwave specular scattering
response of soil texture at X-band”, ADV SPACE RES, Vol. 44(7), 801–
, 2009.
Wan, W., Li, H., Chen, X., Luo, P. and Wan, J., “Preliminary calibration
of GPS signals and its effects on soil moisture estimation”, Acta Meteor.
Sinica, Vol. 27(2), 221–232, 2013.
Phillips, A.J., Newlands, N.K., Liang, S.H., Ellert, B.H., “Integrated
sensing of soil moisture at the field-scale: measuring, modeling and shar-
ing for improved agricultural decision support”, COMPUT ELECTRON
AGR, Vol. 107, 73–88, 2014.
V. Chamoli et al.
Liang, W.L., Hung, F.X., Chan, M.C. and Lu, T.H., “Spatial structure
of surface soil water content in a natural forested headwater catchment
with a subtropical monsoon climate”, J HYDROL, Vol. 516, 210–221,
Tabibi, S., Nievinski, F.G., van Dam, T. and Monico, J.F., “Assessment
of modernized GPS L5 SNR for ground-based multipath reflectometry
applications”. ADV SPACE RES, Vol. 55(4), 1104–1116, 2015.
Zhang, D., Li, Z.L., Tang, R., Tang, B.H., Wu, H., Lu, J. and Shao, K.,
“Validation of a practical normalized soil moisture model with in situ
measurements in humid and semi-arid regions”, INT J REMOTE SENS,
Vol. 36(19–20), 5015–5030, 2015.
El Hajj, M., Baghdadi, N., Zribi, M., Belaud, G., Cheviron, B., Courault,
D. and Charron, F., “Soil moisture retrieval over irrigated grassland
using X-band SAR data”, REMOTE SENS ENVIRON, Vol. 176, 202–
, 2016.
Liao, W., Wang, D., Wang, G., Xia, Y. and Liu, X., “Quality Control
and Evaluation of the Observed Daily Data in the North American Soil
Moisture Database”, J. Meteor. Res, Vol. 33(3), 501–518, 2019.
Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture
on trends in flooding. J. Hydrol. 2019, 575, 432–441.
Wei, L.; Zhang, B.; Wang, M. Effects of antecedent soil moisture on
runoff and soil erosion in alley cropping systems. Agric. Water Manag.
, 94, 54–62.
Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land-
atmospheric feedbacks during droughts and heatwaves: State of the
science and current challenges. Ann. N. Y. Acad. Sci. 2018, 1436,
–35.
Painter, D. J.,( 1976) Moisture Near The Soil Surface. Proceedings of
Soil and Plant Water Symposium: Palmerston North, 7–12.
Proulx, S. (August-2001). Evaluation of The Performance Of Soll Mois-
ture Sensors In Laboratory-Scale Lysimeters. Department of Biosystems
Engineering University of Manitoba Winnipeg, Manitoba, 1–124.
Wobschall, D. (1977). A theory of the complex dielectric permittivity of
soil containing Water” IEEE Transactions on Geoscience Electronics.
GE-15(1): 49–58.
Stacheder, M., Koeniger, F., and Schuhmann, R. (2009). New dielectric
sensors and sensing techniques for soil and snow moisture measure-
ments. Sensors, 9(4), 2951–2967.
Point Measurement Techniques and Radar Remote Sensing Technique 175
Heiniger, R. (2013). Sensors and monitors for measuring soil moisture.
Corn Kernels, (1).
Johri, A., Prakash, R., Vidyarthi, A., Chamoli, V., and Bhardwaj, S. IoT-
Based System to Measure Soil Moisture Using Soil Moisture Sensor,
GPS Data Logging and Cloud Storage. In International Conference on
Innovative Computing and Communications (pp. 679–688). Springer,
Singapore.
ASTM D 2216 (2008), Standard Test Methods for Laboratory Deter-
mination of Moisture (Moisture) Content of Soil, ASTM International,
West Conshohocken, PA.
Johnson AI. Methods of Measuring Soil Moisture in the Field. Geolog-
ical Survey Water-Supply Paper 1619-U; 1962.
Reynolds SG. The Gravimetric Method of Soil Moisture Determination.
J Hydrol. 1970; 11(3): 258–273p.
Patel P, Srivastava HS. Radarsat-2 Announcement of Opportunity
Project on Soil Moisture, Surface Roughness and Vegetation Param-
eter Retrieval using SAR Polarimetry. SAC/EPSA/MPSG/CVD/TDP
R&D/01/13, SOAR International Closing and Reporting-2013, Final
Report Submitted to Canadian Space agency (CSA) through MDA,
Canada, Indian Space Research Organization (ISRO), India. Jan 2013;
–81p.
Shukla A, Panchal H, Mishra M, et al. Soil moisture Estimation
using Gravimetric Technique and FDR Probe Technique: A Compara-
tive Analysis. American International Journal of Research in Formal,
Applied & Natural Sciences (AIJRFANS). 2014; 8(1): 89–92p.
Bhagat VS. Space-born Microwave Remote Sensing of Soil Moisture: A
Review. Recent Progress in Space Technology. 2014; 24(4): 119–150p.
Engman ET, Chauhan N. Status of Microwave Soil Moisture Mea-
surements with Remote Sensing. Remote Sens Environ. 1925; 51(5):
–198p.
Ulaby FT, Dubois PC, Zyl JV. Radar Mapping of Surface Soil Moisture.
J Hydrol. 1996; 184(1–2): 57–84p.
Srivastava HS, Patel P, Sharma Y, et al. Large-Area Soil Moisture Esti-
mation Using Multi-Incident-Angle Radarsat-1 SAR Data. IEEE Trans
Geosci Remote Sens. 2009; 47(8): 2528–2535p.
Blonquist Jr, J. M., Jones, S. B., and Robinson, D. A. (2005). A
time domain transmission sensor with TDR performance characteristics.
Journal of hydrology, 314(1–4), 235–245.
V. Chamoli et al.
B. H. Rao, D. N. Singh, (2011). Moisture content determination by TDR
and capacitance techniques: a comparitive study, Int. J. Earth Sci. Eng.
(6), 132–137.
K. Noborio, (2001). Measurement of soil moisture content and electrical
conductivity by time domain reflectometry: a review, Comput. Electron.
Agric. 31(3), 213–237.
Trebbels, D., Kern, A., Fellhauer, F., Huebner, C., and Zengerle, R.
(2013). Miniaturized FPGA-based high-resolution time-domain reflec-
tometer. IEEE Transactions on Instrumentation and Measurement,
(7), 2101–2113.
Tran, A. P., Bogaert, P., Wiaux, F., Vanclooster, M., and Lambot, S.
(2015). High-resolution space–time quantification of soil moisture along
a hillslope using joint analysis of ground penetrating radar and frequency
domain reflectometry data. Journal of Hydrology, 523, 252–261.
Gaskin, G.D. and J.D. Miller, (1996). Measurement of soil water
content using simplified impedance measuring technique. Journal of
Agricultural Engineering Research 63: 153–160.
L. Ward, R. S. Wittman, U.S. Department of Energy under Contract DE-
AC05-76RL01830, August 2009. PNNL-18539 Available at http://ww
w.pnl.gov/main/publications/external/technical reports/PNNL-18539.
pdf [Accessed on 5 Nov- 2014 ],
Li, J., Smith, D. W., and Fityus, S. G. (2003). The effect of a gap between
the access tube and the soil during neutron probe measurements. Soil
Research, 41(1), 151–164.
Amoozegar, K.C. Martin, M.T. Hoover, (1989). Effect of access hole
properties on soil water content determination by neutron thermalisa-
tion, Soil Sci. Soc. Am. J. 53, 330–335.
Fityus, S., Wells, T., and Huang, W. (2011). Water content measure-
ment in expansive soils using the neutron probe. Geotechnical Testing
Journal, 34(3), 255–264.
Schmugge, T. J., Jackson, T. J., and McKim, H. L. (1980). Survey of
methods for soil moisture determination. Water Resources Research,
(6), 961–979.
Elder, A.N. and Rasmussen, T.C., “Neutron probe calibration in unsatu-
rated tuff”, SOIL SCI SOC AM J, Vol. 58(5), 1301–1307, 1994.
Li, J., Smith, D.W. and Fityus, S.G., “The effect of a gap between the
access tube and the soil during neutron probe measurements”, SOIL
RES, Vol. 41(1), 151–164, 2003.
Point Measurement Techniques and Radar Remote Sensing Technique 177
Sreedeep, S., Reshma, A.C. and Singh, D.N., “Measuring soil electrical
resistivity using a resistivity box and a resistivity probe”, GEOTECH
TEST J, Vol. 27(4), 411–415, 2004
Kumari, A., Patel, N., and Mishra, A. K. (2017). Field evaluation and
calibration of Tensiometer and Gypsum block sensors in drip irrigated
Broccoli (Brassica oleracea var. italica). Journal of Soil and Water
Conservation, 16(3), 267–273.
Sreedeep, S., Reshma, A. C., and Singh, D. N. (2004). Measuring
soil electrical resistivity using a resistivity box and a resistivity probe.
Geotechnical testing journal, 27(4), 411–415.
Zazueta, F. S., and Xin, J. Soil Moisture Sensors, Florida Cooperative
Extension Service. Bulletin, 292.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K.,
Jones, S. B., Knight, R., ... and Wendroth, O. (2008). Soil moisture mea-
surement for ecological and hydrological watershed-scale observatories:
A review. Vadose Zone Journal, 7(1), 358–389.
Terhoeven-Urselmans, T., Schmidt, H., Joergensen, R. G., and Ludwig,
B. (2008). Usefulness of near-infrared spectroscopy to determine biolog-
ical and chemical soil properties: Importance of sample pre-treatment.
Soil Biology and Biochemistry, 40(5), 1178–1188.
Taffesse A.S., Dorosh P., Gemessa S.A. Food and Agriculture in
Ethiopia. University of Pennsylvania Press; Philadelphia, PA, USA. 3
Crop Production in Ethiopia: Regional Patterns and Trends, 2014.
Conway D. The Climate and Hydrology of the Upper Blue Nile River.
Geogr. J.;166:49–62. 2000. doi: 10.1111/j.1475-4959.2000.tb00006.x.
Engida A.N., Esteves M. Characterization and disaggregation of daily
rainfall in the Upper Blue Nile Basin in Ethiopia. J. Hydrol.; 399:226–
, 2011. doi: 10.1016/j.jhydrol.2011.01.001.
Gillies R.R., Carlson T.N. Thermal Remote Sensing of Surface Soil
Water Content with Partial Vegetation Cover for Incorporation into Cli-
mate Models. J. Appl. Meteorol., 34:745–756, 1995. doi: 10.1175/1520-
(1995)034¡0745:TRSOSS¿2.0.CO;2.
Sandholt I., Rasmussen K., Andersen J. A simple interpretation of
the surface temperature/vegetation index space for assessment of sur-
face moisture status. Remote. Sens. Environ., 79:213–224, 2002. doi:
1016/S0034-4257(01)00274-7.
Petropoulos G.P., Ireland G., Petropoulos G.P., Ireland G., Barrett B.
Surface soil moisture retrievals from remote sensing: Current status,
V. Chamoli et al.
products & future trends. Phys. Chem. Earth Parts A/B/C.;83–84:36–56,
Ulaby F.T., Bradley G.A., Dobson M.C. Microwave Backscatter Depen-
dence on Surface Roughness, Soil Moisture, and Soil Texture: Part
II-Vegetation-Covered Soil. IEEE Trans. Geosci. Electron.;17:33–40,
doi: 10.1109/TGE.1979.294626.
Zribi M., Baghdadi N., Holah N., Fafin O. New methodology for soil
surface moisture estimation and its application to ENVISAT-ASAR
multi-incidence data inversion. Remote. Sens. Environ.; 96:485–496,
doi: 10.1016/j.rse.2005.04.005.
Amazirh A., Merlin O., Er-Raki S., Gao Q., Vincent R., Malbeteau Y.,
Khabba S., Escorihuela M.J. Retrieving surface soil moisture at high
spatio-temporal resolution from a synergy between Sentinel-1 radar
and Landsat thermal data: A study case over bare soil. Remote. Sens.
Environ.;211:321–337, 2018. doi: 10.1016/j.rse.2018.04.013.
Bai X., He B., Li X., Zeng J., Wang X., Wang Z., Zeng Y., Su Z.
First Assessment of Sentinel-1A Data for Surface Soil Moisture Esti-
mations Using a Coupled Water Cloud Model and Advanced Integral
Equation Model over the Tibetan Plateau. Remote. Sens.; 9:714, 2017.
doi: 10.3390/rs9070714.
Torres R., Snoeij P., Geudtner D., Bibby D., Davidson M., Attema
E., Potin P., Rommen B., Floury N., Brown M., et al. GMES
Sentinel-1 mission. Remote. Sens. Environ.; 120:9–24, 2012. doi:
1016/j.rse.2011.05.028.
Ulaby F.T., Batlivala P.P., Dobson M.C. Microwave Backscatter Depen-
dence on Surface Roughness, Soil Moisture, and Soil Texture: Part
I-Bare Soil. IEEE Trans. Geosci. Electron.; 16:286–295, 1978. doi:
1109/TGE.1978.294586.
Dobson M.C., Ulaby F. Microwave Backscatter Dependence on Sur-
face Roughness, Soil Moisture, And Soil Texture: Part III-Soil Ten-
sion. IEEE Trans. Geosci. Remote. Sens.; 19:51–61, 1981. doi:
1109/TGRS.1981.350328.
Karthikeyan L., Pan M., Wanders N., Kumar D.N., Wood E.F. Four
decades of microwave satellite soil moisture observations: Part 1. A
review of retrieval algorithms. Adv. Water Resour.; 109:106–120, 2017.
doi: 10.1016/j.advwatres.2017.09.006.
Oh Y., Sarabandi K., Ulaby F. An empirical model and an inversion tech-
nique for radar scattering from bare soil surfaces. IEEE Trans. Geosci.
Point Measurement Techniques and Radar Remote Sensing Technique 179
Remote. Sens.; 30:370–381, 1992. doi: 10.1109/36.134086. [CrossRef]
[Google Scholar]
Oh Y., Sarabandi K., Ulaby F. Semi-empirical model of the ensemble-
averaged differential Mueller matrix for microwave backscattering from
bare soil surfaces. IEEE Trans. Geosci. Remote. Sens. 2002; 40:1348–
doi: 10.1109/TGRS.2002.800232.
Oh Y. Quantitative Retrieval of Soil Moisture Content and Surface
Roughness From Multi-polarized Radar Observations of Bare Soil
Surfaces. IEEE Trans. Geosci. Remote. Sens. 2004; 42:596–601. doi:
1109/TGRS.2003.821065.
Dubois P., Van Zyl J., Engman T. Measuring soil moisture with imaging
radars. IEEE Trans. Geosci. Remote. Sens. 1995; 33:915–926. doi:
1109/36.406677.
Fung A., Li Z., Chen K. Backscattering from a randomly rough dielec-
tric surface. IEEE Trans. Geosci. Remote. Sens. 1992; 30:356–369. doi:
1109/36.134085.
Choker M., Baghdadi N., Zribi M., El Hajj M., Paloscia S., Verhoest
N., Lievens H., Mattia F. Evaluation of the Oh, Dubois and IEM models
using large dataset of SAR signal and experimental soil measurements.
Water. 2017; 9:38. doi: 10.3390/w9010038.
Baghdadi N., Choker M., Zribi M., El Hajj M., Paloscia S., Verhoest
N.E.C., Lievens H., Baup F., Mattia F. A New Empirical Model for
Radar Scattering from Bare Soil Surfaces. Remote. Sens. 2016; 8:920.
doi: 10.3390/rs8110920.
H.S. Srivastava,P. Patel, R.R. Navalgund, “Incorporating soil texture in
soil moisture estimation from extended low-1 beam mode RADARSAT-
SAR data”, International Journal of Remote Sensing, vol. 27(12),
pp. 2587–2598, 2006.
R. Prakash, D. Singh, N.P. Pathak, “A fusion approach to retrieve soil
moisture with SAR and optical data”, IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 5(1), pp. 196–
, 2012.
M. Hajj, N. Baghdadi, G. Belaud, M. Zribi, B. Cheviron, D. Courault,
D. Charron, “Soil moisture retrieval over grassland using X-band
SAR data”, IEEE Geoscience and Remote Sensing Symposium, vol. 1,
pp. 3638–3641, 2014.
R. Guida, V. Fotias, “Soil moisture retrieval with S-band SAR
data”, IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), vol. 1, pp. 1304–1307, 2015.
V. Chamoli et al.
P.S. Narvekar, D. Entekhabi, S.B. Kim, E.G. Njoku, “Soil moisture
retrieval using L-band radar observations”, IEEE Transactions on Geo-
science and Remote Sensing, 53(6), 3492–3506, 2015.
Q. Meng, L. Zhang, Q. Xie, S. Yao, X. Chen, Y. Zhang, Y, “Combined
Use of GF-3 and Landsat-8 Satellite Data for Soil Moisture Retrieval
over Agricultural Areas Using Artificial Neural Network”, Advances in
Meteorology, vol. 2018, pp. 1–12, 2018.
S. Bousbih, M. Zribi, El Hajj, BaghdadiLili-Chabaane, Q. Gao, P.
Fanise, “Soil moisture and irrigation mapping in A semi-arid region,
based on the synergetic use of Sentinel-1 and Sentinel-2 data”, Remote
Sensing, vol. 10(12), pp. 1–22, 2018.
L. Zhu, J.P. Walker, N. Ye, C. R ̈udiger, “Roughness and vegetation
change detection: A pre-processing for soil moisture retrieval from
multi-temporal SAR imagery”, Remote sensing of environment, vol.
, pp. 93–106, 2019.
L. Tao, G. Wang, W. Chen, X. Chen, J. Li, Q. Cai, “Soil Moisture
Retrieval from SAR and Optical Data Using a Combined Model. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 12(2), pp. 637–647, 2019.
Ayehu, G., Tadesse, T., Gessesse, B., Yigrem, Y., and M Melesse, A.,
“Combined Use of Sentinel-1 SAR and Landsat Sensors Products for
Residual Soil Moisture Retrieval over Agricultural Fields in the Upper
Blue Nile Basin, Ethiopia.” Sensors (Basel, Switzerland) vol. 20,11
9 Jun. 2020