Investigation of NavIC and GPS Multipath Phase for Soil Moisture Studies
DOI:
https://doi.org/10.13052/jgeu0975-1416.925Keywords:
Multipath phase, GNSS, GPS, NavIC, soil moistureAbstract
This paper aims to investigate the relationship between the multipath phase of
Global Navigation Satellite System (GNSS) and volumetric moisture content
(VMC) of soil. The carrier to noise ratio (C/No) data of multipath signals at
two different frequencies has been analyzed. The first one is India’s NavIC
L5 frequency (∼1176 MHz) and the second one is GPS L1 frequency (∼1575
MHz). The received multipath signals are highly dependent on dielectric
value of soil and the elevation angle of satellite. The relationship drawn for
the NavIC and GPS C/No data is based on multipath phase analysis and
in situ soil moisture. The values of correlation coefficient observed between
these parameters were 0.9 and 0.63 for NavIC and GPS multipath signal
respectively. The result from both GNSS shows good sensitivity and could
be used to estimate the soil moisture for agricultural land
Downloads
References
Calabia, A., Molina, I., & Jin, S. (2020). Soil Moisture Content from
GNSS reflectometry using dielectric permittivity from fresnel reflec-
tion coefficients. Remote Sensing, 12(1). https://doi.org/10.3390/RS
Chamoli, V., Prakash, R., Vidyarthi, A., & Ray, A. (2018). Sensitivity of
NavIC signal for soil moisture variation. 2017 International Conference
on Emerging Trends in Computing and Communication Technologies,
ICETCCT 2017, 2018–January, 1–4. https://doi.org/10.1109/ICETCC
T.2017.8280318
Chamoli, V., Prakash, R., Vidyarthi, A., & Ray, A. (2020). Capability
of NavIC, an Indian GNSS Constellation, for Retrieval of Surface
Soil Moisture. Progress in Electromagnetic Research, 106(November),
–270.
S. Shekhar et al.
Chew, C., Small, E. E., & Larson, K. M. (2016). An algorithm for soil
moisture estimation using GPS-interferometric reflectometry for bare
and vegetated soil. GPS Solutions, 20(3), 525–537. https://doi.org/10
.1007/s10291-015-0462-4
El Hajj, M., Baghdadi, N., Bazzi, H., & Zribi, M. (2019). Penetration analysis
of SAR signals in the C and L bands for wheat, maize, and grasslands.
Remote Sensing, 11(1), 22–24. https://doi.org/10.3390/rs11010031
Eroglu, O., Kurum, M., & Ball, J. (2019). Response of GNSS-R on Dynamic
Vegetated Terrain Conditions. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 12(5), 1599–1611.
https://doi.org/10.1109/JSTARS.2019.2910565
Han, M., Zhu, Y., Yang, D., Hong, X., & Song, S. (2018). A semi-empirical
SNR model for soil moisture retrieval using GNSS SNR data. Remote
Sensing, 10(2), 1–19. https://doi.org/10.3390/rs10020280
Katzberg, S. J., Torres, O., Grant, M. S., & Masters, D. (2006). Utilizing
calibrated GPS reflected signals to estimate soil reflectivity and dielec-
tric constant: Results from SMEX02. Remote Sensing of Environment,
(1), 17–28. https://doi.org/10.1016/j.rse.2005.09.015
Larson, K. M., Braun, J. J., Small, E. E., Zavorotny, V. U., Gutmann, E. D.,
& Bilich, A. L. (2010). GPS Multipath and Its Relation to Near-Surface
Soil Moisture Content. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 3(1), 91–99. https://doi.org/10.110
/JSTARS.2009.2033612
Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Aguasca, A., Vall-
Llossera, M., Valencia, E., Ramos-Perez, I., & Park, H. (2011). Review
of crop growth and soil moisture monitoring from a ground-based instru-
ment implementing the Interference Pattern GNSS-R Technique. Radio
Science, 46(5), 1–11. https://doi.org/10.1029/2011RS004680
Shekhar, S., Prakash, R., Vidyarthi, A., & Pandey, D. K. (2020). Sensitiv-
ity Analysis of Navigation with Indian Constellation (NavIC) Derived
Multipath Phase towards Surface Soil Moisture over Agricultural Land.
6th International Conference on Signal Processing and Communi-
cation, ICSC 2020, 138–142. https://doi.org/10.1109/ICSC48311.2020
.9182714
Wan, W., Larson, K. M., Small, E. E., Chew, C. C., & Braun, J. J. (2015).
Using geodetic GPS receivers to measure vegetation water content. GPS
Solutions, 19(2), 237–248. https://doi.org/10.1007/s10291-014-0383-7
Yang, T., Wan, W., Chen, X., Chu, T., & Hong, Y. (2017). Using BDS SNR
observations to measure near-surface soil moisture fluctuations: Results
Investigation of NavIC and GPS Multipath Phase for Soil Moisture Studies 193
from low vegetated surface. IEEE Geoscience and Remote Sensing
Letters, 14(8), 1308–1312. https://doi.org/10.1109/LGRS.2017.27
Zavorotny, V. U., Larson, K. M., Braun, J. J., Small, E. E., Gutmann, E. D.,
& Bilich, A. L. (2010). A Physical Model for GPS Multipath Caused by
Land Reflections: Toward Bare Soil Moisture Retrievals. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
(1), 100–110. https://doi.org/10.1109/JSTARS.2009.2033608
Zhang, S., Roussel, N., Boniface, K., Cuong Ha, M., Frappart, F., Darrozes,
J., Baup, F., & Calvet, J. C. (2017). Use of reflected GNSS SNR data
to retrieve either soil moisture or vegetation height from a wheat crop.
Hydrology and Earth System Sciences, 21(9), 4767–4784. https://doi.or
g/10.5194/hess-21-4767-2017
Zhang, S., Roussel, N., Boniface, K., Ha, M. C., Frappart, F., Darrozes, J.,
Baup, F., & Calvet, J.-C. (2017). Use of GNSS SNR data to retrieve
soil moisture and vegetation variables over a wheat crop. Hydrology and
Earth System Sciences Discussions, March,