The Effect of 2D Van der Waals Materials on the Photoresponse of Upconversion Nanoparticles
DOI:
https://doi.org/10.13052/jsame2245-4551.7.004Keywords:
Optical response, β-NaYF4:Yb/Er, GO, g-C3N4, MoS2, BN.Abstract
Upconversion materials, a type of novel functional materials, have many
good physicochemical properties, such as high luminescence stability, high
chemical stability, long luminous life, and low potential biotoxicity. How to
regulate the luminescence of upconversion materials is a significant chal-
lenge. Two-dimensional (2D) Van der Waals materials are a new type of
nanomaterials with a layer structure. Some of them are capable of quenching
the luminescence of dyes, which could be applied in the modulation of optical
response of upconversion materials. Therefore, in this work, we explored the
photoresponse of β-NaYF4:Yb/Er triggered by 2D Van der Waals materials
including graphene oxide, MoS2, g-C3N4 and BN. The results obtained in
this work would be beneficial for the further application of luminescence
modulation of UCNPs. Using UCNPs as a potential fingerprint of 2D Van
der Waals materials, their optical response might be used to distinguish the
2D Van der Waals materials.
Downloads
References
A. Francois, Cheminform, 35, 139–173 (2004).
The Effect of 2D Van der Waals Materials on the Photoresponse 83
M. X. Yu, F. Y. Li, Z. G. Chen, H. He, Z. Cheng, Y. Hong, Anal. Chem,
, 930–935 (2009).
Y. I. Park, K. T. Lee, Y. D. Suh, Chem. Soc. Rev, 44, 1302–1317 (2015).
J. Zhou, Z. Liu, F. Y. Li, Chem. Soc. Rev, 41, 1323–1349 (2012).
Y. M. Yang, F. Liu, X. G. Liu, B. G. Xing, Nanoscale, 5, 231–238 (2013).
W. Wei, T. C. He, X. Teng, S. Wu, M. Lin, Z. Hua, Small, 8, 2271–2276
(2012).
J. Xu, L. Xu, C. Wang, R. Yang, Q. Zhuang, X. Han, Acs Nano, 11,
–4474 (2017).
D. Wang, L. Zhu, Y. Pu, J. X. Wang, J. F. Chen, L. Dai, Nanoscale, 9,
–11221 (2017).
R. R. Deng, X. J. Xie, V. Marc, C. Young-Tae, X. G. Liu, J. Am Chem
Soc, 133, 20168–20171 (2011).
H. Li, L. Shi, D. E. Sun, P. Li, Z. Liu, Biosens Bioelectron, 86, 791–798
(2016).
X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li,
Acs Nano, 10, 1060–1066 (2016).
J. Xu, P. Yang, M. Sun, H. Bi, B. Liu, D. Yang, S. Gai, Acs Nano, 11,
–4144 (2017).
H. Bi, Y. Dai, P. Yang, J. Xu, D. Yang, S. Gai, F. He, B. Liu, Small, 14,
(2018).
S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C. K. Khanarian, D.
Khanarian, R. H. Khanarian, Nano Lett, 6, 169–174 (2006).
F. Zhang, L. Liu, S. Wang, B. Zhao, P. Pei, Y. Fan, X. Li, Angew. Chem.
Int. Ed. Engl, 57, 7518–7522 (2018).
S. Yang, Z. Lin, L. Kong, X. Yao, X. Y. Liu, Adv. Funct. Mater, 27,
–1700638 (2017).
G. Tian, Z. J. Gu, L. J. Zhou, Y. Wenyan, Adv Mater, 24, 1226–1231
(2012).
S. Han, A. Samanta, X. Xie, L. Huang, J. Peng, S. J. Park, D. B. Teh, Y.
Choi, Y. T. Chang, Adv Mater, 29, 1700244–1700251 (2017).
L. Bei, Y. Chen, C. Li, H. Fei, Z. Hou, S. Huang, H. Zhu, X. Chen, J.
Lin, Adv. Funct. Mater, 25, 4717–4729 (2015).
Q. Liu, Y. Sun, T. Yang, J Am Chem Soc, 133, 17122–17125 (2011).
C. Wang, L. Cheng, Z. Liu, Biomaterials, 32, 1110–1120 (2011).
Z. Wang, H. Wu, Q. Li, Nanoscale, 10, 18178–18185 (2018).
Z. Wang, Q. Li, Y. Chen, NPG Asia Mater, 10, 702–713 (2018).
P. Zhang, Z. Wang, L. Liu, Appl. Mater. Mater, 14, 151–158 (2019).
L. Xia, X. Kong, X. Liu, Biomaterials, 35, 4146–4156 (2014).