Gas-phase Ion Spectroscopy of Flexible and Nonflexible Nitrophenolates: Effect of Locking the Two Phenyl Units in 4’-nitro-[1,1’-biphenyl]-4-olate by a Bridging Atom

Authors

  • Bjarke Møller Pedersen Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
  • Steen Brøndsted Nielsen Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

DOI:

https://doi.org/10.13052/jsame2245-4551.6.001

Keywords:

Intrinsic electronic absorption, charge transfer, nitrophenolates, mass spectroscopy.

Abstract

Nitrophenolates (NPs) are molecular anions that can undergo charge-transfer
(CT) transitions determined by the degree of electron delocalization between
the phenolate oxygen (donor group) and the nitro group (acceptor). Here
we have studied four different NPs: 4’-nitro-[1,1’-biphenyl]-4-olate (1),
7-nitro-9H -carbazol-2-olate (NH linker, 2), 7-nitrodibenzo[b,d]furan-3-
olate (oxygen linker, 3), and 7-nitrodibenzo[b,d]thiophen-3-olate (sulphur
linker, 4), and recorded their electronic absorption spectra when isolated
in vacuo to determine the effect of locking the biphenyl spacer group between
the donor and acceptor on transition energies. Absorption was identified from
ion dissociation (action spectroscopy) using a homebuilt setup (sector mass
spectrometer combined with pulsed laser). We find that the absorption is
broad in the visible region for all four NPs with significant vibronic features.
The lowest energy peak is at 601 ± 4 nm, 606 ± 4 nm, 615 ± 4 nm, and
620 ± 4 nm, for 3, 4, 2, and 1, respectively. NP 1 is flexible, and its lowest
energy structure is nonplanar while the other three NPs are planar according
to density functional theory calculations. Hence in the case of 1 the electronic transition has a higher degree of CT than for the other three, accounting for its
absorption furthest to the red. Our work demonstrates that oxygen and sulphur
are best at conveying the electronic coupling between the donor and acceptor
sites as 3 and 4 absorb furthest to the blue (i.e., the degree of CT is lowest
for these two NPs). Based on the average spacing between the peaks in the
vibrational progressions, coupling occurs to skeleton vibrational modes with
frequencies of 649 ± 69 cm−1 (3), 655 ± 49 cm−1 (4), and 697 ± 52 cm−1 (2).

Downloads

Download data is not yet available.

Author Biographies

Bjarke Møller Pedersen, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

Bjarke Møller Pedersen received his Master’s degree in Physics from
Aarhus University in 2016 and has since then been employed as a high
school teacher at Viborg Katedralskole (Denmark)

Steen Brøndsted Nielsen, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

Steen Brøndsted Nielsen earned his PhD in Chemistry in 2000 from the
University of Copenhagen. During his studies, he spent time at Yale, University
of Oslo and University of Alberta. He was a post doc at Aarhus University
(AU) and at Princeton. He has had guest Professorships in Orsay, Caen
and Villetaneuse, and been a JILA Visiting Fellow. Since 2007 he has been
employed as an Associate Professor at AU. He has done research within the
fields of ligated metal ions, vibrational spectroscopy of anions, protein folding
dynamics, biochromophore spectroscopy, and electron induced dissociation
of ions.

References

M. J. Cho, D. H. Choi, P. A. Sullivan, A. J. P. Akelaitis, L. R. Dalton,

Prog. Polym. Sci., 33, 1013–1058 (2008).

I. Alata, C. Dedonder, M. Broquier, E. Marceca, C. Jouvet, J. Am. Chem.

Soc., 132, 17483–17489 (2010).

D. Vonlanthen, A. Mishchenko, M. Elbing, M. Neuburger,

T. Wandlowski, M. Mayor, Angew. Chem. Int. Ed., 48, 8886–8890 (2009).

a) K. Dimroth, A. Schweig, C. Reichardt, Justus Liebigs Ann. Chem., 669,

–105 (1963); b) C. Reichardt, Chem. Rev., 94, 2319–2358 (1994).

E. M. Kosower, J. Am. Chem. Soc., 80, 3253–3260 (1958).

M. J. Kamlet, J. L. Abboud, R. W. Taft, J. Am. Chem. Soc., 99, 6027–6038

(1977).

a) M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc., 98, 377–383 (1976);

b) R. W. Taft, M. J. Kamlet, J. Am. Chem. Soc., 98, 2886–2894 (1976).

S. Brøndsted Nielsen, M. Brøndsted Nielsen, A. Rubio, Acc. Chem. Res.,

, 1417–1425 (2014).

M.-B. S. Kirketerp, M. Å. Petersen, M. Wanko, L. A. E. Leal, H.

Zettergren, F. M. Raymo, A. Rubio, M. Brøndsted Nielsen, S. Brøndsted

Nielsen, Chem. Phys. Chem., 10, 1207–1209 (2009).

J. Houmøller, M. Wanko, A. Rubio, S. Brøndsted Nielsen, J. Phys. Chem.

A, 119, 11498–11503 (2015).

K. Støchkel, B. F. Milne, S. Brøndsted Nielsen, J. Phys. Chem. A, 115,

–2159 (2011).

J. A. Wyer, S. Brøndsted Nielsen, Angew. Chem. Int. Ed., 51,

–10260 (2012).

T. H. Jepsen, M. Jørgensen, M. B. Nielsen, Synthesis, 45, 1115–1120

(2013).

Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,

G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,

Bjarke Møller Pedersen and Steen Brøndsted Nielsen

T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,

J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,

J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,

M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken,

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.

Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,

G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,

A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,

K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,

S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,A. Liashenko, P. Piskorz,

I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.

Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,

W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc.,

Wallingford CT, 2004

Downloads

Published

2023-03-18

How to Cite

Pedersen, B. M., & Nielsen, S. B. (2023). Gas-phase Ion Spectroscopy of Flexible and Nonflexible Nitrophenolates: Effect of Locking the Two Phenyl Units in 4’-nitro-[1,1’-biphenyl]-4-olate by a Bridging Atom. Journal of Self Assembly and Molecular Electronics, 6(1), 1–12. https://doi.org/10.13052/jsame2245-4551.6.001

Issue

Section

Articles