Salt Bridges Regulate in Silico Dimers Formation for β2-Microglobulin Amyloidogenic Variants

Authors

  • Maria Celeste Maschio Department of Physics, University of Modena and Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy
  • Giorgia Brancolini Center S3, CNR-NANO Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
  • Stefano Corni Center S3, CNR-NANO Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy

DOI:

https://doi.org/10.13052/jsame2245-4551.6.003

Keywords:

amyloidosis, molecular dynamics, protein aggregation, β2-microglobulin.

Abstract

β2-microglobulin is a paradigmatic amyloidogenic protein responsible for
dialysis-related amyloidosis, a disease associated to long-term hemodialyzed
patients and characterized by accumulation of amyloid deposits in the osteoar-
ticular tissues. In the early stages of amyloid fibril formation, β2-microglobulin
associates into dimers and higher oligomers, but clarifications are still needed
for the triggering conditions, mechanisms and specificity of dimer forma-
tion. To characterize the dimeric association process, the protein-protein
interactions between three different species are investigated: namely, the
native protein and the two amyloidogenic variants ΔN6 and D76N. The
dimerization process is rationalized relying on state of the art computational
methods. A comparative mechanism for how different mutations in the three
variants can affect protein dimerization and thus fibril formation is proposed. The number of salt bridges involved at the protein-protein interface correlates
with the degree of amyloidogenicity of each individual species. The findings
can offer possible strategies in controlling the dimerization mechanism based
on different β2-microglobulin protein mutations, which have significant roles
in the fibrillogenical process.

Downloads

Download data is not yet available.

Author Biographies

Maria Celeste Maschio, Department of Physics, University of Modena and Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy

Maria Celeste Maschio is a PhD student at the University of Modena and
Reggio Emilia, Italy. She is working on a project about the modeling of
an amyloidogenic protein in solution and on nanostructures, using classical
molecular dynamics, under the supervision of Prof. Stefano Corni and Giorgia
Brancolini. She spent a period of six months in King’s College London
(UK) working with Prof. Carla Molteni on enhanced sampling methods as
Metadynamics.

Giorgia Brancolini, Center S3, CNR-NANO Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy

Giorgia Brancolini received her Ph.D. in Chemistry from the University
of Modena and Reggio Emilia, Italy, in cooperation with the University of
Ulm, Germany. She was a post-doctoral fellow at Politecnico di Milano from
2002–2004 in the Dept. of Chemical Engineering. From 2004–2010 she was a
senior post-doctoral fellow at National Research Council in Italy. Since 2010
Dr. Brancolini is a fixed term research scientist at the Center S3 CNR-NANO
of the Institute of Nanoscience of the National Research Council in Modena,
Italy. She is working on multi scale simulations, spanning from ab initio to
classical and coarse grained models, of the interactions between proteins and
inorganic surfaces/nanoparticles.

Stefano Corni, Center S3, CNR-NANO Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy

Stefano Corni is full-professor of Physical Chemistry at the Dept. of Chem-
ical Sciences, University of Padova, Italy, and a research associate with
CNR-NANO Modena, Italy. He got his Ph.D. in Chemistry from the Scuola
Normale Superiore di Pisa, Italy, in 2003. He is working on the classical
and quantum mechanical modeling of the interactions between proteins
and inorganic surfaces/nanoparticles, on the optical properties of molecules
interacting with metal nanoparticles and on electron transfer in biomolecules
and between biomolecules and electrodes.

References

P. J. Bjorkman, M. A. Saper, B. Samraoui, W. S. Bennett, J. L.

Strominger, and D. C. Wiley. Structure of the human class I histocom-

patibility antigen, HLA-A2. Nature, 329:506, 1987.

L. Halabelian, S. Ricagno, S. Giorgetti, C. Santambrogio, A. Barbiroli,

S. Pellegrino, A. Achour, R. Grandori, L. Marchese, S. Raimondi,

P. P. Mangione, G. Esposito, R. Al-Shawi, J. P. Simons, I. Speck,

M. Stoppini, M. Bolognesi, and V. Bellotti. Class I major histocom-

patibility complex, the trojan horse for secretion of amyloidogenic

β2-microglobulin. Journal of Biological Chemistry, 289(6):3318–3327,

F. Gejyo, T. Yamada, S. Odani, Y. Nakagawa, M.Arakawa, T. Kunitomo,

H. Kataoka, M. Suzuki, Y. Hirasawa, T. Shirahama, A. S. Cohen, and

K. Schmid. A new form of amyloid protein associated with chronic

hemodialysis was identified as β2-microglobulin. Biochemical and

Biophysical Research Communications, 129(3):701–706, 1985.

A. Corazza, E. Rennella, P. Schanda, M. C. Mimmi, T. Cutuil,

S. Raimondi, S. Giorgetti, F. Fogolari, P. Viglino, L. Frydman, M. Gal,

V. Bellotti, B. Brutscher, and G. Esposito. Native-unlike long-lived

intermediates along the folding pathway of the amyloidogenic pro-

tein β2-microglobulin revealed by real-time two-dimensional NMR.

Journal of Biological Chemistry, 285(8):5827–5835, 2010.

C. Rosano, S. Zuccotti, and M. Bolognesi. The three-dimensional

structure of β2-microglobulin: results from x-ray crystallography.

Biochimica et Biophysica Acta, 1753(1):85–91, 2005.

M. Stoppini and V. Bellotti. Systemic amyloidosis: Lessons from

β2-microglobulin. Journal of Biological Chemistry, 290(16):9951–

, 2015.

H. Naiki, N. Hashimoto, S. Suzuki, H. Kimura, K. Nakakuki, and

F. Gejyo. Establishment of a kinetic model of dialysis-related amyloid

fibril extension in vitro. Amyloid, 4(4):223–232, 1997.

M. C. Maschio et al.

C. M. Eakin, A. J. Berman, and A. D. Miranker. A native to amy-

loidogenic transition regulated by a backbone trigger. Nature Structural

Molecular Biology, 13:202, 2006.

M. Stoppini, P. Mangione, M. Monti, S. Giorgetti, L. Marchese,

P. Arcidiaco, L. Verga, S. Segagni, P. Pucci, G. Merlini, and V. Bellotti.

Proteomics of β2-microglobulin amyloid fibrils. Biochimica et Biophys-

ica Acta, 1753(1):23–33, 2005.

G. Esposito, R. Michelutti, G. Verdone, P. Viglino, H. Hern ́andez,

C.V. Robinson, A. Amoresano, F. Dal Piaz, M. Monti, P. Pucci,

P. Mangione, M. Stoppini, G. Merlini, G. Ferri, and V. Bellotti. Removal

of the n-terminal hexapeptide from human β2-microglobulin facilities

protein aggregation and fibril formation. Protein Science, 9(5):831–845,

V. Bellotti, M. Gallieni, S. Giorgetti, and D. Brancaccio. Dynamic of β2-

microglobulin fibril formation and reabsorption: The role of proteolysis.

Seminars in Dialysis, 14(2):117–122, 2001.

T. Eichner, A. P. Kalverda, G. S. Thompson, S. W. Homans, and

S. E. Radford. Conformational conversion during amyloid formation

at atomic resolution. Molecular Cell, 41(2):161–172, 2011.

S. Valleix, J. D. Gillmore, F. Bridoux, P. P . Mangione, A. Dogan,

B. Nedelec, M. Boimard, G. Touchard, J. M. Goujon, C. Lacombe,

P. Lozeron, D.Adams, C. Lacroix, T. Maisonobe, V. Plante-Bordeneuve,

J. A. Vrana, J. D. Theis, S. Giorgetti, R. Porcari, S. Ricagno,

M. Bolognesi, M. Stoppini, M. Delpech, M. B. Pepys, P. N. Hawkins,

and V. Bellotti. Hereditary systemic amyloidosis due to Asp76Asn

variant β2-microglobulin. New England Journal of Medicine, 366(24):

–2283, 2012.

M. de Rosa,A. Barbiroli, S. Giorgetti, P. P. Mangione, M. Bolognesi, and

S. Ricagno. Decoding the structural bases of D76N β2-microglobulin

high amyloidogenicity through crystallography and ASN-scan mutage-

nesis. PLosOne, 1–15, 2015.

P. P. Mangione, G. Esposito, A. Relini, S. Raimondi, R. Porcari,

S. Giorgetti, A. Corazza, F. Fogolari, A. Penco, Y. Goto, Y-H. Lee,

H. Yagi, C. Cecconi, M. M. Naqvi, J. D. Gillmore, P. N. Hawkins,

F. Chiti, R. Rolandi, G. W. Taylor, M. B. Pepys, M. Stoppini, and

V. Bellotti. Structure, folding dynamics, and amyloidogenesis of D76N

β2-microglobulin: roles of shear flow, hydrophobic surfaces and

α-crystallin. Journal of Biological Chemistry, 288(43):30917–30930,

Salt Bridges Regulate in Silico Dimers Formation 55

K. Domanska, S. Vanderhaegen, V. Srinivasan, E. Pardon, F. Dupeux,

J. A. Marquez, S. Giorgetti, M. Stoppini, L. Wyns, V. Bellotti, and

J. Steyaert. Atomic structure of a nanobody-trapped domain-swapped

dimer of an amyloidogenic β2-microglobulin variant. Proceedings of

the National Academy of Sciences, 108(4):1314–1319, 2011.

D. P. Smith, S. Jones, L. C. Serpell, M. Sunde, and S. E. Radford.

A systematic investigation into the effect of protein destabilisation on

β2-microglobulin amyloid formation. Journal of Molecular Biology,

(5):943–954, 2003.

T. R. Jahn, M. J. Parker, S. W. Homans, and S. E. Radford. Amyloid

formation under physiological conditions proceeds via a native-like

folding intermediate. Nature Structural and Molecular Biology, 13,

T. Eichner and S. E. Radford. A generic mechanism of β2-microglobulin

amyloid assembly at neutral pH involving a specific proline switch.

Journal of Molecular Biology, 386(5):1312–1326, 2009.

G. W. Platt and S. E. Radford. Glimpses of the molecular mechanisms

of β2-microglobulin fibril formation in vitro: aggregation on a complex

energy landscape. FEBS Letter, 583(16):2623–2629, 2009.

N. H. H. Heegaard, T. J. D. Jørgensen, N. Rozlosnik, D. B. Corlin,

J. S. Pedersen, A. G. Tempesta, P. Roepstorff, R. Bauer, and M. H. Nis-

sen. Unfolding, aggregation, and seeded amyloid formation of Lysine-

-cleaved β2-microglobulin. Biochemistry, 44(11):4397–4407, 2005.

S. Giorgetti, S. Raimondi, K. Pagano, A. Relini, M. Bucciantini,

A. Corazza, F. Fogolari, L. Codutti, M. Salmona, P. Mangione,

L. Colombo,A. De Luigi, R. Porcari,A. Gliozzi, M. Stefani, G. Esposito,

V. Bellotti, and M. Stoppini. Effect of tetracyclines on the dynamics

of formation and destructuration of β2-microglobulin amyloid fibrils.

Journal of Biological Chemistry, 286(3):2121–2131, 2011.

F. Fogolari, A. Corazza, P. Viglino, P. Zuccato, L. Pieri, P. Faccioli,

V. Bellotti, and G. Esposito. Molecular dynamics simulation sug-

gests possible interaction patterns at early steps of β2-microglobulin

aggregation. Biophysical Journal, 92(5):1673–1681, 2007.

S. G. Estacio, H. Krobath, D. Vila-Vicosa, M. Machuqueiro,

E. I. Shakhnovich, and P. F. N. Faisca. A simulated intermediate state for

folding and aggregation provides insights into ΔN6 β2-microglobulin

amyloidogenic behavior. PLoS Computational Biology, 10(5):1–17,

M. C. Maschio et al.

C. M. Eakin, F. J. Attenello, C. J. Morgan, and A. D. Miranker.

Oligomeric assembly of native-like precursors precedes amyloid for-

mation by β2-microglobulin. Biochemistry, 43(24):7808–7815, 2004.

A. M. Smith, T. R. Jahn, A. E. Ashcroft, and S. E. Radford. Direct obser-

vation of oligomeric species formed in the early stages of amyloid fibril

formation using electrospray ionisation mass spectrometry. Journal of

Molecular Biology, 364(1):9–19, 2006.

H. E. White, J. L. Hodgkinson, T. R. Jahn, S. Cohen-Krausz,

W. S. Gosal, S. M ̈uller, E. V. Orlova, S. E. Radford, and H. R.

Saibil. Globular tetramers of β2-microglobulin assemble into elaborate

amyloid fibrils. Journal of Molecular Biology, 389(1):48–57, 2009.

E. Rennella, T. Cutuil, P. Schanda, I. Ayala, F. Gabel, V. Forge,

A. Corazza, G. Esposito, and B. Brutscher. Oligomeric states along the

folding pathways of β2-microglobulin: kinetics, thermodynamics, and

structure. Journal of Molecular Biology, 425(15):2722–2736, 2013.

M. Martinez, N. J. Bruce, J. Romanowska, D. B. Kokh, M. Ozboyaci,

X. Yu, M. A. ̈Ozt ̈urk, S. Richter, and R. C. Wade. SDA 7: a modular

and parallel implementation of the simulation of diffusional association

software. Journal of Computational Chemistry, 36(21):1631–1645,

D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications and

new perspectives. Physical Chemistry Chemical Physics, 7:3910–3916,

G. Verdone, A. Corazza, P. Viglino, F. Pettirossi, S. Giorgetti,

P. P. Mangione, A. Andreola, M. Stoppini, V. Bellotti, and G. Espos-

ito. The solution structure of human β2-microglobulin reveals the

prodromes of its amyloid transition. Protein Science, 11(3):487–499,

D. Gumral, F. Fogolari,A. Corazza, P. Viglino, S. Giorgetti, M. Stoppini,

V. Bellotti, and G. Esposito. Reduction of conformational mobility

and aggregation in W60G β2-microglobulin: assessment by N15 NMR

relaxation. Magnetic Resonance in Chemistry, 51(12):795–807, 2015.

G. Esposito, M. Garvey, V.Alverdi, F. Pettirossi,A. Corazza, F. Fogolari,

M. Polano, P. P. Mangione, S. Giorgetti, M. Stoppini, A. Rekas,

V. Bellotti, A.J.R. Heck and J. A. Carver. Monitoring the interac-

tion between β2-microglobulin and the molecular chaperone αB-

crystallin by NMR and mass spectrometry: αb-crystallin dissociates

β2-microglobulin oligomers. The Journal of Biological Chemistry,

(24):17844–17858, 2013.

Salt Bridges Regulate in Silico Dimers Formation 57

G. Brancolini, D. Toroz, and S. Corni. Can small hydrophobic

gold nanoparticles inhibit β2-microglobulin fibrillation? Nanoscale,

: 7903–7911, 2014.

L. Halabelian, A. Relini, A. Barbiroli, A. Penco, M. Bolognesi, and S.

Ricagno. A covalent homodimer probing early oligomers along amyloid

aggregation. Scientific Reports, 5, 2015.

M. Beerbaum, M. Ballaschk, N. Erdmann, C. Schnick, A. Diehl,

B. Uchanska-Ziegler, A. Ziegler, and P. Schmieder. NMR spectroscopy

reveals unexpected structural variation at the protein-protein interface in

MHC class I molecules. Journal of Biomolecular NMR, 57(2):167–178,

R. J. S. Loureiro, D. Vila-Vicosa, M. Machuqueiro, E. I. Shakhnovich,

and P. F. N. Faisca. A tale of two tails: The importance of unstructured

termini in the aggregation pathway of β2-microglobulin. Proteins:

Structure, Function, and Bioinformatics, 85(11):2045–2057, 2017.

S. Raimondi, R. Porcari, P. P. Mangione, G. Verona, J. Marcoux,

S. Giorgetti, G. W. Taylor, S. Ellmerich, M. Ballico, S. Zanini, E. Pardon,

R. Al-Shawi, J. P. Simons, A. Corazza, F. Fogolari, M. Leri, M. Stefani,

M. Bucciantini, J. D. Gillmore, P. N. Hawkins, M. Valli, M. Stoppini,

C. V. Robinson, J. Steyaert, G. Esposito, and V. Bellotti. A specific

nanobody prevents amyloidogenesis of D76N β2-microglobulin in vitro

and modifies its tissue distribution in vivo. Scientific Reports, 7:46711,

A specific nanobody prevents amyloidogenesis of D76N The control-

ling roles of Trp60 and Trp95 in β2-microglobulin function, folding

and amyloid aggregation properties. Journal of Molecular Biology,

:887, 2008.

V. L. Mendoza, K. Antwi, M. A. Bar ́on-Rodr ́iguez, C. Blanco, and

R. W. Vachet. Structure of the preamyloid dimer of β2-microglobulin

from covalent labeling and mass spectrometry. Biochemistry, 49(7):

–1532, 2010.

G. W. Platt, K. E. Routledge, S. W. Homans, and S. E. Radford.

Fibril growth kinetics reveal a region of β2-microglobulin important

for nucleation and elongation of aggregation. Journal of Molecular

Biology, 378(1):251–263, 2008.

T. Eichner and S. E. Radford. Understanding the complex mecha-

nisms of β2-microglobulin amyloid assembly. FEBS Journal, 278(20):

–3883, 2011.

M. C. Maschio et al.

A. H. Elcock, R. R. Gabdoulline, R. C. Wade, and J. A. McCammon.

Computer simulation of protein-protein association kinetics:

acetylcholinesterase-fasciculin. Journal of Molecular Biology,

(1):149–162, 1999.

D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark,

and H. J. C. Berendsen. Gromacs: Fast, flexible, and free. Journal of

Computational Chemistry, 26(16):1701–1718, 2005.

G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through

velocity rescaling. Journal of Chemical Physics, 126(1), 2007.

M. Parrinello and A. Rahman. Polymorphic transitions in single crys-

tals: A new molecular dynamics method. Journal of Applied Physics,

(12):7182–7190, 1981.

G. Brancolini, D. B. Kokh, L. Calzolai, R. C. Wade, and S. Corni. Dock-

ing of ubiquitin to gold nanoparticles. ACS Nano, 6(11):9863–9878,

G. Brancolini, A. Corazza, M. Vuano, F. Fogolari, M. C. Mimmi,

V. Bellotti, M. Stoppini, S. Corni, and G. Esposito. Probing the influence

of citrate-capped gold nanoparticles on an amyloidogenic protein. ACS

Nano, 9(3):2600–2613, 2015.

C. Cantarutti, S. Raimondi, G. Brancolini, A. Corazza, S. Giorgetti,

M. Ballico, S. Zanini, G. Palmisano, P. Bertoncin, L. Marchese, P. P.

Mangione, V. Bellotti, S. Corni, F. Fogolari, and G. Esposito. Citrate-

stabilized gold nanoparticles hinder fibrillogenesis of a pathological

variant of β2-microglobulin. Nanoscale, 9:3941–3951, 2017.

G. Brancolini, M. C. Maschio, C. Cantarutti, A. Corazza, F. Fogolari,

V. Bellotti, S. Corni, and G. Esposito. Citrate stabilized gold

nanoparticles interfere with amyloid fibril formation: D76N and δN6

β2-microglobulin variants. Nanoscale, 10:4793–4806, 2018.

A. Patriksson and D. van der Spoel. A temperature predictor for

parallel tempering simulations. Physical Chemistry Chemical Physics,

:2073–2077, 2008.

M. M. Seibert, A. Patriksson, B. Hess, and D. van der Spoel. Repro-

ducible polypeptide folding and structure prediction using molecular

dynamics simulations. Journal of Molecular Biology, 354(1):173–183,

D. van der Spoel and M. M. Seibert. Protein folding kinetics and

thermodynamics from atomistic simulations. Physical Review Letter.,

:238102, 2006.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983

Downloads

Published

2023-03-18

How to Cite

Maschio, M. C., Brancolini, G., & Corni, S. (2023). Salt Bridges Regulate in Silico Dimers Formation for β2-Microglobulin Amyloidogenic Variants. Journal of Self Assembly and Molecular Electronics, 6(1), 35–60. https://doi.org/10.13052/jsame2245-4551.6.003

Issue

Section

Articles