Influence of Film Morphology on Transient Photocurrent Pulse Shape in Organic Thin Films: A Monte Carlo Study
DOI:
https://doi.org/10.13052/jsame2245-4551.2017.001Keywords:
Film Morphology, Polycrystalline organic thin films, Charge transport, Time of flight photoconductivity, Tail broadening, Diffusion.Abstract
The influence of film morphology on the broadening of the time-of-flight
transient photo-current pulse is investigated using Monte Carlo simulation.
Simulation of the time-of-flight transient photo-current pulse shape is carried
out for homogeneous and inhomogeneous organic thin films by varying the
overall energetic disorder. In homogeneous system, the value of the tail
broadening parameter (W) of the photocurrent pulse is found to decrease upon
decreasing the energetic disorder, which can be attributed to the variation in
the non-thermal field assisted diffusion. Interestingly, in the case of inhomo-
geneous system, upon decreasing the overall energetic disorder of the system
the value of W initially attains a maximum value before it starts decreasing.
This observation is explained in terms of the morphology dependent carrier
diffusion. This study asserts the importance of the influence of the morphology
dependent carrier diffusion on the charge transport in disordered systems and
the related experimental measurements.
Downloads
References
G. Hadziioannou, Paul F. van Hutten. Semiconducting Polymers: Chem-
istry, Physics and Engineering, Wiley-VCH, Weinhelm (2000).
M. Pope and C. E. Swenberg. Electronic Processes in Organic Crystals
and Polymers, 2ndEdn Oxford University Press, New York (1999).
S. Baranovski, Charge transport in disordered solids with application in
electronics, John Wiley & Sons, England (2006).
H. Bässler, Phys. Stat. Sol. (b), 175, 15–56 (1993).
N. Tessler, Y. Preezant, N. Rappaport, Y. Roicham, Adv. Mater., 21,
–2761 (2009).
J. O. Oelerich, D. Huemmer, S. D. Baranovskii, Phys. Rev. Lett., 108,
(2012).
S. Heun, P. M. Borsenberger, Physica B, 216, 43–52 (1995).
H. Tokuhisa, M. Era, T. Tsutsui, S. Saito. Appl. Phys. Lett., 66, 3433–3435
(1995).
M. Abbas, A. Pivrikas, E. Arici, N. Tekin, M. Ullah, H. Sitter, N. S.
Sariciftci. J. Phys. D: Appl. Phys., 46, 495105 (2013).
L. B. Schein, V. Saenko, E. D. Pozhidaev, A. Tyuntev, D. S. Weiss. J.
Phys. Chem. C, 113, 1067–1073 (2009).
A. P. Tyutnev, V. S. Saenko, E. D. Pozhidaev, V. A. Kolesnikov. J. Phys.
Condens. Matter, 21, 115107 (2009).
A. Hirao, H. Nizhizawa, M. Sugiuchi. Phys. Rev. Lett., 75, 1787–1790
(1995).
Influence of Film Morphology on Transient Photocurrent Pulse Shape 13
A. Hirao, H. Nizhizawa. Jpn. J. Appl. Phys., 45, L250–L252 (2006).
M. Brinza, G. J.Adriaenssens. J. Opt. Electron. Adv. Mater., 8, 2028–2034
(2006).
S. R. Cowan, R. A. Street, S. Cho, A. J. Heeger. Phys. Rev. B, 83, 035205
(2011).
A. Ohno, J. Hanna, D. H. Dunlap, A. Cabral. Jpn. J. Appl. Phys., 43,
L460–L463 (2004).
P. M. Borsenberger, L. T. Pautmeier, H. Bässler. Phys. Rev. B, 48,
–3073 (1993).
P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerog-
raphy, Vol. 59 of Optical engineering series, Marcel Dekker, New York
(1998).
A. P. Tyutnev, D. S. Wiess, D. H. Dunlap, V. S. Saenko. J. Phys. Chem.
C., 118, 5150–5158 (2014).
A. Salleo. Mater. Today, 10, 38–45 (2007).
F. Liu, Y. Gu, J.W. Jung, W. H. Jo, T. P. Russel. J. Polym. Sci., Part B:
Polym. Phys., 50, 1018–1044 (2012).
M. M. D. Ramos. H. M.C. Barbosa, H. M. G. Correia. Mater. Sci. and
Eng. B, 176, 468–472 (2011).
L. B. Schein. J. Phys. Chem. C, 112, 7295–7308 (2008).
S. V. Novikov, A. V. Vanikov. J. Phys. Chem. C, 113, 2532–2540 (2009).
S. Raj Mohan, M. P. Joshi, M. P. Singh. Org. Electron., 9, 355–368 (2008).
S. Raj Mohan, M. P. Singh, M. P. Joshi. J. Phys. Chem. C, 116, 2555–2562
(2012).
S. Raj Mohan, M. P. Singh, M. P. Joshi, L. M. Kukreja. J. Phys. Chem
C, 117, 24663–24672 (2013).
W. R. Saleneck, K. Seki, A. Kahn, J. Pireaux, Conjugated Polymer
and Molecular Interfaces: Science And Technology For Photonic And
Optoelectronic Application, Marcel Dekker, New York, (2002).
(a) J. Zhou, Y. C. Zhou, X. D. Gao, C. Q. Wu, X. M. Ding, X.Y. Hou. J.
Phys. D: Appl. Phys., 42, 035103 (2009). (b) J. Zhou, Y. C. Zhou, J. M.
Zhao, C. Q. Wu, X. M. Ding, X.Y. Hou. Phys. Rev. B, 75, 15320 (2007).
L. Meng, D. Wang, Q. Li, Y. Yi, J. L. Bredas, Z. Shuai. J. Chem. Phys.,
, 124102 (2011).
S. V. Noikov, D. H. Dunlap, V. M. Kenkre, A. V. Vannikov. Proc. SPIE,
, 94–101 (1999).
J. R. Durrant, J. Konester, D. Wiersma. Chem. Phys. Lett., 222, 450–456
(1994).
L. Pautmeier, R. Richert, H. Bässler. Philos. Magz., 63, 587–601 (1991).
S. Raj Mohan et al.
A. I. Rudenko, V. I. Arkhipov. Philos. Magz., 45, 177–187 (1982).
R. Mauer, M. Kastler, F. Laquai. Adv. Funct. Mater., 20, 2085–2092
(2010).