Characterization of Emergence of the Coulomb Blockade in a Pearl-Like DNA-AuNP Assembly
DOI:
https://doi.org/10.13052/jsame2245-4551.5.003Keywords:
DNA, gold nanoparticles, metallization, single electron transis- tor, differential conductance.Abstract
Due to its superior self-assembly properties and vast functionalization pos-
sibilities DNA has long been one of the most promising candidates for
fabrication of nanoscale electrical components using molecular building
blocks. There exist already many demonstrations on optical devices based on
organizing metallic nanoparticles (NP) via DNA self-assembly, but despite the
promises only few DNA based electrical devices or studies have been realized
so far. Here we study the gold NP conjugated and metallized DNA TX-tile-
structure, which we recently showed to exhibit the room temperature Coulomb
blockade, the pre-requisition for a single electron transistor. The properties of
the obtained Coulomb blockade are further characterized via the differential
conductance measurements at temperatures ranging from 4.2 K to 10.2 K.
The results show sharp blockade plateaus with varying threshold voltages,
which yields further evidence of a gating effect by background charges. This
strongly indicates that the DNA-NP assembly functions as a single electron
transistor. Also, the additional growth of gold NPs and electrodes via chemical
gold deposition process, needed to achieve the Coulomb blockade, is studied
here in more details, yielding more insight to the process, and thus helping to
realize better control of it.
Downloads
References
M. Ratner. Nat. Nanotechnol., 8, 378–381 (2013).
N. Mojarad, J. Gobrecht, and Y. Ekinci. Microelectron. Eng., 143, 55–63
(2015).
Y. S. Rusli, and N. Singh. IEEE Trans. Nanotechnol., 10, 96–98 (2011).
A. V. Pinheiro, D. Han, W. M. Shih, and H. Yan. Nat. Nanotechnol., 6,
–772 (2011).
O. I. Wilner, and I. Willner, Chem. Rev., 112, 2528–2556 (2012).
V. Linko, A. Ora, and M. A. Kostiainen. Trend Biotechnol., 33, 586–594
(2015).
M. L. Petrillo, C. J. Newton, R. P. Cunningham, N. R. Kallenbach, R.-I.
Ma and N. C. Seeman. Biopolymers, 27, 1337–1352 (1988).
E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Nature, 394, 539–
(1998).
T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N.
C. Seeman, J. Am. Chem. Soc., 122, 1848–1860 (2000).
P. W.K. Rothemund. Nature, 440, 297–302 (2006).
E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, A. Lind-Thomsen, W.
Mamdouh, K. V. Gothelf, F. Besenbacher, and J. Kjems. ACS Nano, 2,
–1218 (2008).
B. Saccà, and C. M. Niemeyer, Angew. Chem. Int. Ed., 51, 58–66 (2012).
A.-P. Eskelinen, A. Kuzyk, T. K. Kaltiaisenaho, M. Y. Timmermans, A.
G. Nasibulin, E. I. Kauppinen, and P. Törmä, Small, 6, 746–750 (2011).
V. Linko, S. Nummelin, L. Aarnos, K. Tapio, J. J. Toppari, and M. A.
Kostiainen. Nanomaterials, 6, 139 (2016).
B. Yurke,A. J. Turberfield,A. P. Mills Jr, F. C. Simmel, and J. L. Neumann.
Nature, 406, 605–608 (2000).
Characterization of Emergence of the Coulomb Blockade 43
M. Lui, J. Fu, C. Hejesen, Y. Yang, N. W. Woodbury, K. Gothelf, Y. Liu,
and H. Yan. Nature Comm., 4, 2127 (2013).
S. D. Perrault, and W. M. Shih. ACS Nano, 8, 5132–5140 (2014).
B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor,
J. Am. Chem. Soc., 132, 3248–3249 (2010).
H. T. Maune, S.-P. Han, R. D. Barish, M. Bockrath, W. A. Goddard III,
P.W.K. Rothemund, and E. Winfree, Nat. Nanotechnol., 5, 61–66 (2010).
B. Shen, K. Tapio, V. Linko, M. A. Kostiainen, and J. J. Toppari.
Nanomaterials, 6, 146 (2016).
E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov,
and T. Liedl, Nano lett., 15, 1368–1373 (2015).
X. Lan, Z. Chen, G. Dai, X. Lu, W. Ni, and Q. Wang, J. Am. Chem. Soc.,
, 11441–11444 (2013).
M. Pilo-Pais, A. Watson, S. Demers, T. H. LaBean, and G. Finkelstein.
Nano Lett., 14, 2099–2104 (2014).
X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo,
N. Liu, and B. Ding. Nano Lett., 13, 2128–2133 (2013).
G. Maubach, and W. Fritzsche, Nano Lett., 4, 607–611 (2004).
G. Maubach, D. Born, A. Csáki, and W. Fritzsche. Small, 1, 619–624
(2005).
B. Teschome, S. Facsko, T. Schönherr, J. Kerbusch, A. Keller, and A.
Erbe. Langmuir, 32, 10159–10165 (2016).
B. L. Altshuler, P. A. Lee, and R. A. Webb. Mesoscopic Phenomena in
Solids. Amsterdam: Elsevier, 173–271 (1991).
R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E.
Prober, Science, 280, 1238–1242 (1998).
A. Rossi, T. Tanttu, F. E. Hudson, Y. Sun, M. Möttönen, and A. S. Dzurak,
J. Vis. Exp., 100, 52852 (2015).
J. P. Kauppinen, K. T. Loberg, A. J. Manninen, J. P, Pekola, and R. A.
Vuotilainen. Rev. Sci. Instrum., 69, 4166–4175 (1998).
K. Tapio, J. Leppiniemi, B. Shen, V. P. Hytönen, W. Fritzsche, and J. J.
Toppari, Nano lett., 16, 6780–6786 (2016).
A. N. Korotkov. Int. J. Electron., 86, 511–547 (1999).
V. Linko, J. Leppiniemi, S.-T. Paasonen, V. P. Hytönen, and J. J. Toppari.
Nanotechnology, 22, 275610 (2011).
H. A. Pohl. J. Appl. Phys., 22, 869–871 (1951).
A. Kuzyk. Molecular devices for nanoelectronics and plasmonics. Ph.D.
dissertation, University of Jyväskylä, Jyväskylä.