Enzyme Mediated Encapsulation of Gold Nanoparticles by Polyaniline Nanoshell

Authors

  • Shlomo Yitzchaik Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

DOI:

https://doi.org/10.13052/jsame2245-4551.311

Keywords:

Au-nanoparticles (AuNP), enzymatic polymerization, HRP enzyme, polyaniline, nano-shell.

Abstract

In this contribution we describe the formation of gold nanoparticles (AuNP)
and polyaniline (PANI) AuNP-PANI nanocomposite via in situ enzymatic
polymerization. The method consists of electrostatic adsorption of anilinium
monomers on AuNPs citrate stabilized surface of 50 nm diameters, followed
by oxidation with horseradish peroxidase (HRP) enzyme and its cofactor
H2O2. All reaction steps were monitored by UV-Vis-NIR spectroscopy includ-
ing in situ detection of the polymerization process. UV-Vis-NIR, Cyclic
voltammetry (CV) and surface enhanced Raman scattering (SERS) measure-
ments supported the formation of a nanoshell of PANI on the AuNP core. Two templates for anilinium assembly were compared revealing a strong
dependence of the enzymatic kinetics on the template. The kinetic study had
shown that the rigid template of the AuNP contributes to higher reaction rate
on the AuNP compared with the more flexible polyanion template. The mild
reaction condition enables an easy and precise method for obtaining PANI
nano-shell on anionic templates for advanced bioelectronic applications

Downloads

Download data is not yet available.

Author Biography

Shlomo Yitzchaik, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

S. Yitzchaik graduated in Chemistry and got his Ph.D. in Chemistry at
the Weizmann Institute of Science, Rehovot in 1992. A faculty member
of the Hebrew University since 1996. He is an author of about 100 peer
reviewed journal papers. Major research interests since 1996 focus around
self-assembled nanolayers. He has authored over 100 papers and holds 20
patents in the fields of material science, solid-state organic chemistry and
nanolayers derived biosensor technologies.

References

G. Baffou, R. Quidant. Chem. Soc. Rev., 43, 3898–3907 (2014).

a) S. Yang, X. Luo. Nanoscale, 6, 4438–4457, (2014); b) M. C. Daniel,

D. Astruc. Chem. Rev. 104, 293–346 (2004).

J. Pecher, S. Mecking. Chem. Rev., 110, 6260–6279 (2010).

P. Xu, X. Han, B. Zhang, Y. Du, H. L. Wang. Chem. Soc. Rev., 43,

–1360 (2014).

M. Strivastava, S. K. Strivastava, N. R. Nirala, R. Prakash. Anal. Methods,

, 817–824, (2014).

S. Huh, S. B. Kim. J. Phys. Chem. C, 114, 2880–2885 (2010).

X. Liu, L. Li, M. Ye, Y. Xue, S. Chen. Nanoscale, 6, 5223–5229 (2014).

Y. Leroux, E. Eang, C, Fave, G. Trippe, J. C. Lacroix. Electrochem.

Comm. 9, 1258–1262, (2007).

a) A. J. Heeger. J. Phys. Chem. B, 105, 8475–8491 (2001); b) E. Smela.

Adv. Mat. 15, 481–494 (2003); c) J. C. Chiang, A. G. MacDiarmid.

Synth. Met. 13, 193–205 (1986); d) E. W. Paul, A. J. Rico, M. S. Wrighton.

J. Phys. Chem. 89, 1441–1447 (1985).

I. Turyan, D. Mandler. J. Am. Chem. Soc. 120, 10733–10742 (1998).

a) R. Sfez, L. De-Zhong, I. Turyan, D. Mandler, S. Yitzchaik. Langmuir,

, 2556–2559 (2001); b) R. Oren, R. Sfez, N. Korbakov, K. Shabtai,

A. Cohen, H. Erez, A. Dormann, H. Cohen, J. Shappir, M.E. Spira, S.

Yitzchaik. J. Biomater. Sci. Polymer Edn, 15, 1355–1374 (2004).

A. Nahor, I. Shalev, A. Sa’ar, S. Yitzchaik. Eur. J. Inorg. Chem., 2014,

in press. DOI: 10.1002/ejic.201402450.

a) S. Ben-Valid, H. Dumortier, R. Sfez, M. Décossas, A. Bianco,

S. Yitzchaik. J. Mater. Chem., 20, 2408–2417 (2010); b) S. Ben-Valid,

B. Botka, K. Kamarás, A. Zeng, S. Yitzchaik. Carbon, 48, 2773–2781

(2010).

Y. Bardavid, A. B. Kotlyar, S. Yitzchaik. Macromol. Symp., 2006, 240,

–106.

a) F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-Gotarredona,

B. Linares-Barranco, D. Vuillaume. Adv. Funct. Mater. 22, 609–616

(2012). b) R. Oren, R. Sfez, N. Korbakov, K. Shabtai, A. Cohen,

R. Sfez et al.

H. Erez, A. Dormann, H. Cohen, J. Shappir, M. E. Spira, S. Yitzchaik.

J. Biomater. Sci. Polymer Edn, 15, 1355–1374 (2004).

a) Y. C. Liu. Langmuir, 18, 9513–9518 (2002); b) X. Dai, Y. Tan, J. Xu.

Langmuir, 18, 9010–9016 (2002); b) T. K. Sarma, D. Chowdhury, A.

Paul, A. Chattopadhyay. Chem Comm. 1048–1049 (2002).

Z. Li, Y. Li, W. Lin, F. Zheng, J. Laven. Polymer Composite, DOI

1002/pc.

P. Xu, K. Chang, Y. Il Park, B. Zhang, L. Kang, Y. Du, R. S. Iyer, H. L.

Wang. Polymer, 54, 485–489 (2013).

T. Selvan, J. P. Spatz, H. A. Klok, M. Möller. Adv. Mater., 10, 132–134

(1998).

a) K. Mallick, M. J. Witcomb, M. S. Scurrel. Gold Bulletein, 39,

–174 (2006); b) X. Xu, X. Liu, Q. Yu, W. Wang, S. Xing. Colloid.

Polym. Sci., 290, 1759–1764 (2012).

L. A. Samuelson, A. Anagnostopolulos, K. S. Alva, J. Kumar, S. K.

Tripathy. Macromolecules, 31, 4376–4378 (1998).

K. M. Koeller, C. Wong. Nature, 409, 232–240 (2001).

W. Liu, J. Kumar, S. K. Tripathy, K. J. Senecal, L. A. Samuelson.

J. Am. Chem. Soc. 121, 71–78 (1999).

R. Sfez, N. Peor, S. R. Cohen, H. Cohen, S. Yitzchaik. J. Mater. Chem.

, 4044–4050 (2006).

W. Liu, A. L. Cholli, R. Nagarajan, J. Kumar, S. Tripathy, F. F. Bruno,

L. Samuelson. J. Am. Chem. Soc. 121, 11345–11355 (1999).

B. J. Johnson, W. Russ Algar, A. P. Malanoski, M. G. Ancona, I. L.

Medintz. Nanotoday, 9, 102–131, (2014).

G. Frens. Nature-Physical Science, 241, 20–22 (1973).

D. S. Janelle Newman, W. A. MacCrehan. Langmuir, 25, 8993–8998,

(2009).

a) M. Baibarac, M. Cochet, M. Lapkowski, L. Mihut, S. Lefrant, I. Baltog.

Synt. Met. 96, 63–70, (1998); b) M. Lapkowski, K. Berrada, S. Quillard,

G. Louarn, S. Lefrant, A. Pron. Macromolecules, 28, 1233–1238 (1995).

K. Kamarás, B. Botka1, A. Pekker1, S. Ben-Valid, A. Zeng, L. Reiss,

S. Yitzchaik. Phys. Status Solidi B, 246, 2737–2739 (2009).

Downloads

Published

2023-03-18

How to Cite

Yitzchaik, S. (2023). Enzyme Mediated Encapsulation of Gold Nanoparticles by Polyaniline Nanoshell. Journal of Self Assembly and Molecular Electronics, 3(1), 1–16. https://doi.org/10.13052/jsame2245-4551.311

Issue

Section

Articles