Computational Strategies for Protein-Surface and Protein-Nanoparticle Interactions

Authors

  • Giorgia Brancolini Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
  • Laura Zanetti Polzi Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
  • Stefano Corni Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy

DOI:

https://doi.org/10.13052/jsame2245-4551.211

Keywords:

gold; nanoparticles; amyloid; docking, molecular dynamics, redox potential.

Abstract

Protein-nanoparticle associations have important applications in nanoscience
and nanotechnology but the recognition mechanisms and the determinants
of specificity are still poorly understood at the microscopic level. Crucial
questions remain open, related to the association mechanisms, control of
binding events, and preservation of functionality. Gold is a promising material
in nanoparticles for nanobiotechnology applications because of the ease of
its functionalization and its tunable optical properties. We present a concise
overview of recent computational modeling advances which were pursued in
the quest for a theoretical framework elucidating the association mechanisms
and the ability to design and control the recognition events of a specific
class of systems, namely, interfaces between polypeptides/proteins and a gold
surface in the presence of water. We select two different methodological
advances, the first related to the effect of surfactants covering the surface
of nanoparticles and altering their interactions with proteins and the second
related to the immobilization of proteins on inorganic surfaces and conserving
their functionality. Both cases, demonstrate how the understanding of the
polypeptide-surface coupling mechanisms is essential to the control of the
process and exploitation for biotechnological and nanotechnological purposes.

Downloads

Download data is not yet available.

References

M. Sarikaya, C. Tamerler, A. K. Jen, K. Schulten, F. Baneyx, Molec-

ular Biomimetics: Nanotechnology through Biology. Nat. Mater., 2,

–585 (2003).

S. Linse, C. Cabaleiro-Lago, W.-F. Xue, I. Lynch, S. Lindman,

E. Thulin, S. E. Radford, K. A. Dawson, Nucleation of protein fibrillation

by nanoparticles. Proc. Natl. Acad. Sci. USA, 104, 8691–8696 (2007).

M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B.

Bombelli, S. Laurent, Protein-Nanoparticle Interactions: Opportunities

and Challenges. Chem. Rev., 111, 5610–5637 (2011).

M.-E. Aubin-Tam, S. Hwang, and K Hamad-Schifferli, Site-Directed

Nanoparticle labeling of Cytochrome C. Proc. Natl. Acad. Sci. U.S.A.,

, 4095–4100 (2009).

G. Goobes, R. Goobes, O. Schueler-Furman, D. Baker, P. S. Stayton,

Drobny, G. P. Folding of the C-Terminal Bacterial binding Domain in

Statherin upon Adsorption onto Hydroxyapatite Crystals. Proc. Natl.

Acad. Sci. U.S.A., 103, 16083–16088 (2006).

J. J. Gray, The Interaction of Proteins with Solid Surfaces. Curr. Opin.

Struct. Bio., 14, 110–115 (2004).

J. H. Harding, D. M. Duffy, Sushko, L. Maria, P. Mark

Rodger, D. Quigley, J. A. Elliott, Computational techniques at the

organic-inorganic interface in biomineralization. Chem. Rev., 108,

–4854 (2008).

Computational Strategies for Protein-Surface 21

R. A. Latour, Molecular Simulation of Protein-Surface Interactions:

Benefits, Problems, Solutions, and Future Directions. Biointerphases,

, FC2-FC12 (2008).

O. Cohavi, S. Corni, F. De Rienzo, R. Di Felice, K. E. Gottschalk,

M. Hoefling, D. Kokh, E. Molinari, G. Schreiber, A. Vaskevich, R. C.

Wade, Protein-Surface Interactions: Challenging Experiments and Com-

putations. J. Mol. Recognit., 23, 259–262 (2009).

M. Bachmann, K. Goede, A. G. Beck-Sickinger, M. Grundmann,

A. Irb ̈ack, and W. Janke, Microscopic Mechanism of Specific Peptide

Adhesion to Semiconductor Substrates. Angew. Chem., Int. Ed., 49,

–9533 (2010).

R. Di Felice, S. Corni, Simulation of Peptide-Surface Recognition.

J. Phys. Chem. Lett., 2, 1510–1519 (2011).

K. Makrodimitris, D. L. Masica, E. T. Kim, J. J. Gray, Structure

Prediction of Protein-Solid Surface Interactions Reveals a Molecular

Recognition Motif of Statherin for Hydroxyapatite. J. Am. Chem. Soc.,

, 13713–13722 (2007).

L. M. Ghiringhelli, B. Hess, N. F. A. van der Vegt, L. Delle Site,

Competing Adsorption between Hydrated Peptides and Water onto Metal

Surfaces: from Electronic to Conformational Properties. J. Am. Chem.

Soc., 130, 13460–13464 (2008).

G. Hong, H. Heinz, R. R. R. Naik, B. L. Farmer, R. Pachter,

Toward Understanding Amino Acid Adsorption at Metallic Interfaces:

a Density Functional Theory Study. ACS Appl. Mater. Interfaces, 1,

–392 (2009).

A. Vila Verde, J. M. Acres, J. K. Maranas, Investigating the Specificity

of Peptide Adsorption on Gold Using Molecular Dynamics Simulations.

Biomacromolecules, 10, 2118–2128 (2009).

A. Vila Verde, P. J. Beltramo, J. K. Maranas, Adsorption of

Homopolypeptides on Gold Investigated Using Atomistic Molecular

Dynamics. Langmuir, 27, 10, 5918–5926 (2011).

R. Coppage, J. M. Slocik, B. D. Briggs, A. I. Frenkel, H. Heinz,

R. R. Naik, M. R. Knecht, Crystallographic Recognition Controls Pep-

tide Binding for Bio-Based Nanomaterials. J. Am. Chem. Soc., 133,

–12349 (2011).

A. Calzolari, G. Cicero, C. Cavazzoni, R. D. Felice, A. Catellani,

S. Corni, Hydroxyl-Rich β-Sheet Adhesion to the Gold Surface

in Water by First-Principle Simulations. J. Am. Chem. Soc., 132,

–4795 (2010).

J. Yu, M. L. Becker, G. Carri, The Influence of Amino Acid Sequence and

Functionality on the Binding Process of Peptides onto Gold Surfaces.

Langmuir, 28, 1408–1417 (2012).

G. Brancolini et al.

L. Ruan, H. Ramezani-Dakhel, C. Y. Chiu, E. Zhu, Y. Li, H. H. Y.

Heinz, Tailoring molecular specificity toward a crystal facet: a lesson

from biorecognition toward Pt(111). Nano Lett., 13, 840–846 (2013).

M. Hoefling, F. Iori, S. Corni, K. E. Gottschalk, The Conforma-

tions of Amino Acids on a Gold(111) Surface. ChemPhysChem, 11,

–1767 (2010).

M. Hoefling, Iori F.; S. Corni, K. E. Gottschalk, Interaction of Amino

Acids with the Au(111) Surface: Adsorption Free Energies from Molec-

ular Dynamics Simulations. Langmuir, 26, 8347–8351 (2010).

M. Hoefling, S. Monti, S. Corni, K. E. Gottschalk, Interaction of

β-Sheet Folds with a Gold Surface. PLoS One, 6, e20925 (2012).

D. Toroz, S. Corni, Peptide Synthesis of Gold Nanoparticles: the Early

Steps of Gold Reduction Investigated by Density Functional Theory.

Nano Lett., 11, 1313–1318 (2011).

L. B. Wright, P. M. Rodger, S. Corni, T. R. Walsh, GolP-CHARMM:

First-Principles Based Force Fields for the Interaction of Proteins with

Au(111) and Au(100) J. Chem. Theory Comput., 9, 1616–1630 (2013).

L. B. Wright, P. M. Rodger, T. R. Walsh, S. Corni, First-

Principles-Based Force Field for the Interaction of Proteins with

Au(100)(5x1): An Extension of GolP-CHARMM J. Phys. Chem. C, 117,

–24306 (2013).

G. Brancolini, D. B. Kokh, L. Calzolai, R. C. Wade, S. Corni, Docking

of Ubiquitin to Gold Nanoparticles. ACS NANO, 6, 9863–9878 (2012).

G. Brancolini, D. Toroz, S. Corni, Can small hydrophobic gold nanopar-

ticles inhibit β2-Microglobulin fibrillation? Nanoscale, 6, 7903–7911

(2014).

F. Iori, R. Di Felice, E. Molinari, S. Corni, GolP: An Atomistic Force-

Field to Describe the Interaction of Proteins with Au(111) Surfaces in

Water J. Comp. Chem., 30, 1465–1476 (2009).

M. Aschi, R. Spezia, A. Di Nola, and A. Amadei, A first priciples method

to model perturbed electronic wavefunctions: the effect of an external

electric field. Chem. Phys. Lett., 344:374–380, 2001.

D. B. Kokh, S. Corni, P. J. Winn, M. Hoefling, K. E. Gottschalk, R. C.

Wade, ProMetCS: An Atomistic Force Field for Modeling Protein-Metal

Surface Interactions in a Continuum Aquesous Solvent. J. Chem. Theory

Comput., 6, 1753–1768 (2010).

L. Zanetti-Polzi, I. Daidone, C. A. Bortolotti, and S. Corni, Surface

packing determines the redox potential shift of cytochrome c adsorbed

on gold. Journal of the American Chemical Society, 136:12929–12937,

R. R. Gabdoulline, R. C. Wade, Simulation of the DiffusionalAssociation

of Barnase and Barstar. Biophys. J., 72, 1917–1929 (1997).

Computational Strategies for Protein-Surface 23

www.h-its.org/mcm

D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark,

Berendsen, H. J. C, GROMACS: Fast, Flexible, and Free. J. Comp.

Chem., 26, 1701–1718 (2005).

C. Oostenbrink, A. Villa, A. E. Mark, W. F. van Gunsteren, A biomolec-

ular force field based on the free enthalpy of hydration and solvation: the

GROMOS force-field parameter sets 53A5 and 53A6. J. Comp. Chem.,

, 1656–1676 (2004).

N. Spackova, I. Berger, M. Egli, J. Sponer, Molecular Dynamics of

Hemiprotonated Intercalated Four-Stranded i-DNA: Stable Stable Tra-

jectories on a Nanosecond Scale J. Am. Chem. Soc., 120, 6147–6151

(1998).

L. B. Wright, M. P. Rodgera, T. R. Walsh, Aqueous citrate: a first-

principles and force-field molecular dynamics study RSC Adv., 3,

–16409 (2013).

J.-W. Park, J. S. Shumaker-Parry, Structural Study of Citrate Layers on

Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing

Nanoparticles. J. Am. Chem. Soc., 136, 1907–1921 (2014).

J. Kunze, I. Burgess, R. Nichols, I. Buess-Herman, J. Lipkowski,

Electrochemical Evaluation of Citrate Adsorption on Au(111) and the

Stability of Citrate-Reduced Gold Colloids. J. Electroanal. Chem., 599,

–159 (2007).

http://biophysics.cs.vt.edu/H++

J. L. Elechiguerra, J. Reyes-Gasga, M. J. Yacaman, The Role of Twinning

in Shape Evolution of Anisotropic Noble Metal Nanostructures J. Mater.

Chem., 16, 3906–3919 (2006).

Y. Lin, G. Pan, G.-J. Su, X.-H. Fang, L.-J. Wan, C.-L. Bai, Study of

CitrateAdsorbed on theAu(111) Surface by Scanning Probe Microscopy.

Langmuir, 19, 10000–10003 (2003).

http://projects.villa-bosch.de/mcmsoft/sda/6.00/

R. R. Gabdoulline, R. C. Wade, Effective Charges for Macromolecules

in Solvent. J. Phys. Chem., 100, 3868–3878 (1996).

G. Brancolini, A. Corazza, M. Vuano, F. Fogolari, M. C. Mimmi, V.

Bellotti, M. Stoppini, S. Corni, G. Esposito, to be submitted 2014

L. Zanetti-Polzi, A. Amadei, M. Aschi, and I. Daidone, Insight into the

ir-spectra/structure relationship in amyloid fibrils: a theoretical study on

a prion peptide. J. Am. Chem. Soc., 133(30):11414–11417 (2011).

A. Amadei, I. Daidone, and M. Aschi, A general theoretical model for

electron transfer reactions in complex systems. Phys. Chem. Chem.

Phys., 14:1360–13770 (2012).

G. Brancolini et al.

I. Daidone,A.Amadei, F. Zaccanti, M. Borsari, and C.A. Bortolotti, How

the reorganization free energy affects the reduction potential of struc-

turally homologous cytochromes. The Journal of Physical Chemistry

Letters, 5(9):1534–1540 (2014).

R. Spezia, M. Aschi, A. Di Nola, and A. Amadei, Extension of the

perturbed matrix method: application to a water molecule. Chem. Phys.

Lett., 365:450–456 (2002).

A. Amadei, M. D’Abramo, C. Zazza, and M. Aschi, Electronic properties

of formaldehyde: a theoretical study. Chem. Phys. Lett., 381:187–193

(2003).

A. Amadei, F. Marinelli, M. D’Abramo, M. D’Alessandro, M. Anselmi,

A. Di Nola, and M.Aschi, Theoretical modeling of vibro-electronic quan-

tum states in complex molecular systems: solvated carbon monoxide, a

test case. J. Chem. Phys., 122:124506 (2005).

A. Amadei, M. D’Alessandro, M. D’Abramo, and M. Aschi, Theoretical

characterization of electronic states in interacting chemical systems.

J. Chem Phys., 130:08410–08415 (2009).

J. Gao and D. G. Truhlar, Quantum mechanical methods for enzyme

kinetics. Ann. Rev. Phys. Chem., 53:467–505 (2002).

T. Vreven and K. Morokuma, Chapter 3 hybrid methods: ONIOM

(QM:MM) and QM/MM. Ann. Rep. Comp. Chem., 2:35–51 (2006).

H. M. Senn and W. Thiel, QM/MM studies of enzymes. Curr. Opin.

Chem. Biol., 11:182–187 (2007).

A. Amadei, M. D’Alessandro, and M. Aschi, Statistical mechanical

modeling of chemical reactions in complex systems: the reaction free

energy surface. J. Phys. Chem. B, 108:16250–16254 (2004).

I. Muegge, P. X. Qi, A. J. Wand, Z. T. Chu, and A. Warshel, The

reorganization energy of cytochrome c revisited. J. Phys. Chem. B,

:825–836 (1997).

L. B. Sagle, J. Zimmermann, S. Matsuda, P. E. Dawson, and F. E.

Romesberg, Redox-coupled dynamics and folding in cytochrome c.

J. Am. Chem. Soc., 1128(24):7909–7915 (2006).

H. A. Heering, F. G. M. Wiertz, C. Dekker, and S. deVries, Direct immo-

bilization of native yeast iso-1 cytochrome c on bare gold: fast electron

relay to redox enzymes and zeptomole protein-film voltammetry. J. Am.

Chem. Soc., 126:11103–11112 (2004).

C. A. Bortolotti, G. Battistuzzi, M. Borsari, P. Facci, A. Ranieri, and

M. Sola, The redox chemistry of the covalently immobilized native

and low-pH forms of yeast iso-1-cytochrome c. J. Am. Chem. Soc.,

:5444–5451 (2006).

Computational Strategies for Protein-Surface 25

C. A. Bortolotti, A. Amadei, M. Aschi, M. Borsari, S. Corni, M. Sola, and

I. Daidone, The reversible opening of water channels in cytochrome c

modulates the heme iron reduction potential. J. Am. Chem. Soc.,

:13670–13678 (2012)

Downloads

Published

2023-03-18

How to Cite

Brancolini, G., Polzi, L. Z., & Corni, S. (2023). Computational Strategies for Protein-Surface and Protein-Nanoparticle Interactions. Journal of Self Assembly and Molecular Electronics, 2(1), 1–26. https://doi.org/10.13052/jsame2245-4551.211

Issue

Section

Articles