Integrating DNA with Functional Nanomaterials

Authors

  • Shalom J. Wind Department of Applied Physics and Applied Mathematics Columbia University, New York, NY, USA
  • Erika Penzo Department of Applied Physics and Applied Mathematics Columbia University, New York, NY, USA
  • Matteo Palma Department of Applied Physics and Applied Mathematics Columbia University, New York, NY, USA
  • Risheng Wang Department of Applied Physics and Applied Mathematics Columbia University, New York, NY, USA
  • Teresa Fazio Department of Chemistry Hebrew University of Jerusalem, Jerusalem, Israel
  • Danny Porath Department of Chemistry Hebrew University of Jerusalem, Jerusalem, Israel
  • Dvir Rotem Department of Chemistry Hebrew University of Jerusalem, Jerusalem, Israel
  • Gideon Livshits Department of Chemistry Hebrew University of Jerusalem, Jerusalem, Israel
  • Avigail Stern Department of Chemistry Hebrew University of Jerusalem, Jerusalem, Israel

DOI:

https://doi.org/10.13052/jsame2245-4551.122

Abstract

DNA may be the most versatile molecule discovered to date. Beyond its well-
known central role in genetics, DNA has the potential to be a remarkably useful
technological material. It has been demonstrated as a scaffold for the assembly
of organic and inorganic nanomaterials [1]; a vehicle for drug delivery [2]; a
medium for computation [3]; and a possible wire for transporting electrical
signals [4]. A key factor in exploiting DNA in these ways is the ability to
integrate DNA with other materials. In this paper, we review two approaches
to forming DNA complexes with functional nanomaterials: (1) linking DNA
with single-wall carbon nanotubes (SWCNTs), which can then be used as
nanoscale electrical contacts for probing electron transport in DNA; and (2)
directed nanoassembly of Au nanoparticles using DNA/PNA (peptide nucleic
acid) hybrid scaffolds.

Downloads

Download data is not yet available.

References

F. A. Aldaye, A. L. Palmer, and H. F. Sleiman, Assembling Materials with

DNA as the Guide, Science, 321(5897): 1795–1799 (2008).

J. Fu and H. Yan, Controlled drug release by a nanorobot, Nat Biotech,

(5): 407–408 (2012).

L. M. Adleman, Computing with DNA, Sci Am, 279(2): 54–61 (1998).

J. C. Genereux and J.K. Barton, Mechanisms for DNA Charge Transport,

Chem Rev, 110(3):1642–1662 (2010).

X. Guo, J. P. Small, J. E. Klare, Y. Wang, M. S. Purewal, I. W. Tam,

B. H. Hong, R. Caldwell, L. Huang, S. O’Brien, J. Yan, R. Breslow, S.

J. Wind, J. Hone, P. Kim, and C. Nuckolls, Covalently bridging-gaps

in single-walled carbon nanotubes with conducting molecules, Science,

(5759): 356–359 (2006.).

X. F. Guo, A. Whalley, J. E. Klare, L. M. Huang, S. O’Brien, M.

Steigerwald, and C. Nuckolls, Single-molecule devices as scaffolding

for multicomponent nanostructure assembly, Nano Lett,. 7(5):1119–1122

(2007).

X. F. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, and C. Nuckolls,

Conductivity of a single DNA duplex bridging a carbon nanotube gap.

Nature Nanotechnology, 3(3): 163–167 (2008).

Integrating DNA with Functional Nanomaterials 191

X. Y. Huang, R. S. McLean, and M. Zheng, High-resolution length sorting

and purification of DNA-wrapped carbon nanotubes by size-exclusion

chromatography, Anal Chem, 77(19): 6225–6228 (2005).

DNA strands were purchased from Syntezza.

Y. Weizmann, D. M. Chenoweth, and T. M. Swager, Addressable Termi-

nally Linked DNA-CNT Nanowires, J Am Chem Soc, 132(40):14009–

(2010).

T. Bentin and P. E. Nielsen, In vitro transcription of a torsionally

constrained template, Nucleic Acids Res, 30(3): 803–809 (2002).

P. E. Nielsen, M. Egholm, and O. Buchardt, Peptide Nucleic-Acid (PNA)

- a DNA Mimic with a Peptide Backbone, Bioconjugate Chem, 1994.

(1): p. 3–7.

P. E. Nielsen, A new molecule of life? Peptide nucleic acid, a synthetic

hybrid of protein and DNA, could form the basis of a new class of drugs-

and of artificial life unlike anything found in nature, Sci Am, 299(6):

–71 (2008).

P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, Sequence

Specific-Inhibition of DNA Restriction Enzyme Cleavage by PNA,

Nucleic Acids Res, 1993. 21(2): 197–200.

P. S. Lukeman, A. C. Mittal, and N. C. Seeman, Two dimensional

PNA/DNA arrays: estimating the helicity of unusual nucleic acid

polymers, Chem Commun, (15): 1694–1695 (2004).

A. L. Stadler, D.Z. Sun, M. M. Maye, D. van der Lelie, and O. Gang,

Site-Selective Binding of Nanoparticles to Double-Stranded DNA via

Peptide Nucleic Acid "Invasion", ACS Nano, 5(4): 2467–2474 (2011).

Applied biosystems - support. https://www2.appliedbiosystems.com

/support/seqguide.cfm?

E. Y. Chan, N. M. Goncalves, R. A. Haeusler, A. J. Hatch, J. W. Larson,

A. M. Maletta, G. R. Yantz, E.D. Carstea, M. Fuchs, G.G. Wong, S.R.

Gullans, and R. Gilmanshin, DNA mapping using microfluidic stretching

and single-molecule detection of fluorescent site-specific tags, Genome

Res, 14(6): 1137–1146 (2004).

H. Zohar, C. L. Hetherington, C. Bustamante, and S. J. Muller, Peptide

Nucleic Acids as Tools for Single-Molecule Sequence Detection and

Manipulation, Nano Lett, 10(11): 4697–4701 (2010).

P. E. Nielsen, Peptide nucleic acids : methods and protocols. Methods in

molecular biology., Totowa, N. J.: Humana Press. 274 p (2002).

Integrated DNA Technologies, Coralville, IA

Shalom J. Wind et.al

M. Schvartzman and S.J. Wind, Robust Pattern Transfer of Nanoim-

printed Features for Sub-5-nm Fabrication. Nano Lett, 9(10): 3629–3634

(2009).

H. Namatsu, Y. Takahashi, K. Yamazaki, T. Yamaguchi, M. Nagase,

and K. Kurihara, Three-dimensional siloxane resist for the formation

of nanopatterns with minimum linewidth fluctuations, J Vac Sci Technol

B, 16(1): 69–76 (1998).

M. Palma, J. J.Abramson,A.A. Gorodetsky, E. Penzo, R. L. Gonzalez, M.

P. Sheetz, C. Nuckolls, J. Hone, and S. J. Wind, Selective Biomolecular

Nanoarrays for Parallel Single-Molecule Investigations, J Am Chem Soc,

(20): 7656–7659 (2011)

Downloads

Published

2023-03-18

How to Cite

Wind, S. J., Penzo, E., Palma, M., Wang, R., Fazio, T., Porath, D., Rotem, D., Livshits, G., & Stern, A. (2023). Integrating DNA with Functional Nanomaterials. Journal of Self Assembly and Molecular Electronics, 1(2), 177–194. https://doi.org/10.13052/jsame2245-4551.122

Issue

Section

Articles