Experimental Investigation of Self-Assembled Opal Structures by Atomic Force Microscopy, Spectroscopic Ellipsometry and Reflectometry
DOI:
https://doi.org/10.13052/jsame2245-4551.124Keywords:
opal, photonic crystal, Bragg diffraction, photonic bandgap structure, reflectance and transmittance spectra, ellipsometry, atomic force microscopy.Abstract
Self-assembled opal crystals (bulk silica opals and PMMA thin opal films)
have been studied by atomic force microscopy (AFM) and optical spec-
troscopy. Reflectance and transmittance spectra (R(λ) and T (λ), respectively)
as well as spectra of ellipsometric parameters Ψ(λ) and Δ(λ)demonstrate
pronounced changes with changing the angle of light incidence. Diameters of
spheres obtained from AFM-images correspond to those obtained from Bragg
fit to the diffraction resonance dispersions. The band of light losses detected by
ellipsometry at the spectral range of avoided band crossing of opal eigenmodes
was assigned to the energy exchange between these modes
Downloads
References
V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev,
L. A. Samoilovich, S. M. Samoilovich, Yu. A. Vlasov, Il Nuovo Cimento,
D, 1349–1354 (1995).
Experimental Investigation of Self-Assembled Opal Structures 217
S. G. Romanov, N. Gaponik, A. Eychmüller, A. L. Rogach, V. G.
Solovyev, D. N. Chigrin, C. M. Sotomayor Torres, In Photonic crystals:
Advances in design, fabrication, and characterization; Busch K.; Lölkes
S.; Wehrspohn R. B.; Föll H.; Eds.; Weinheim, DE (2004).
V. Solovyev, Y. Kumzerov, S. Khanin, Physics of regular matrix compos-
ites (Electrical and optical phenomena in nanocomposite materials based
on porous dielectric matrices); Saarbrücken, DE, 2011 (in Russian).
V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, Y. A. Kumzerov,
V. P. Petranovskii, S. G. Romanov, L. A. Samoilovich, Crystallography
Reports, 38, 348–353 (1993).
V.A. Tkal, N.A. Voronin, V. G. Solov’ev, N. O.Alekseeva, S. V. Pan’kova,
and M. V. Yanikov, Inorganic Materials, 46, 119–121 (2010).
V. A. Shvets, E. V. Spesivtsev, S. V. Rykhlitskii, and N. N. Mikhailov,
Nanotechnologies in Russia, 4, 201–214 (2009).
M. Ahles, T. Ruhl, G. P. Hellmann, H. Winkler, R. Schmechel, H. von
Seggern, Optics Communications, 246, 1–7 (2005).
A. I. Plekhanov, V. P. Chubakov, and P. A. Chubakov, Physics of the Solid
State, 53, 1145–1151 (2011).
A. Reza, Z. Balevicius, R. Vaisnoras, G. J. Babonas, A. Ramanavicius,
Thin Solid Films, 519, 2641–2644 (2011).
W. Khunsin,A.Amann, G. Kocher, S. G. Romanov, S. Pullteap, H. C. Seat,
E. P. O’Reilly, R. Zentel, C. M. Sotomayor Torres, Adv. Func. Mater., 22,
–1821 (2012).
A. F. Belyanin, M. I. Samoilovich, Nanostructures and Photon Crystals:
Collective Monograph after the Materials of Plenary Reports of the
th International Conference “High Technology in Russian Industry”;
Moscow: CRTI “Technomash” (2004).
S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel,
D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, Phys. Rev. E, 63,
(2001).
V. G. Solovyev, S. G. Romanov, D. N. Chigrin, C. M. Sotomayor Torres,
Synthetic Metals, 139, 601 (2003).
N. Alekseeva, V. Veisman, A. Lukin, S. Pan’kova, V. Solovyev,
M. Yanikov, Nanotechnics, 31, 23–26 (2012) (in Russian).
C. Wolff, S. G. Romanov, J. Küchenmeister, U. Peschel and K. Busch,
submitted.