Formation of Dimers Composed of a Single Short dsDNA Connecting Two Gold Nanoparticles
DOI:
https://doi.org/10.13052/same2245-4551.114Keywords:
DNA, gold nanoparticles, gel electrophoresis.Abstract
We report synthesis of dimers composed of a single short double-stranded
(ds)DNA molecule connecting two gold nanoparticles (GNPs). Such struc-
tures may be useful for electrical transport measurements through dsDNA
molecules and for other research purposes. When the DNA molecules are
short with respect to the size of the GNP, gel electrophoresis cannot separ-
ate GNPs with different numbers of DNA molecules attached to them. We
present two methods to separate GNPs connected to single short thiolated
single-stranded (ss)DNA. The separation is performed by hybridizing the
DNA/GNP conjugates with long, partially complementary, ssDNA or with
complementary ssDNA connected to GNPs of smaller size. The separated
GNPs with a single short ssDNA were used to form dimers consisting of
GNPs connected by a single short dsDNA molecule.
Downloads
References
A. Stern, D. Rotem, I. Popov, D. Porath, Journal of Physics: Condensed Matter, 24(16),
(2012).
C. J. Loweth, W. B. Caldwell, X. Peng, A. P. Alivisatos, P. G. Schultz, Angewandte
Chemie International Edition, 38(12), 1808–1812 (1999).
J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, N. C. Seeman,
Nano Letters, 6(7), 1502–1504 (2006).
H. Cohen, C. Nogues, R. Naaman, D. Porath, Proceedings of the National Academy of
Sciences of the United States of America, 102(33), 11589–11593 (2005).
H. Cohen, C. Nogues, D. Ullien, S. Daube, R. Naaman, D. Porath, Faraday Discuss.,
, 367–376 (2005).
D. Ullien, H. Cohen, D. Porath, Nanotechnology, 18(42), 424015 (2007).
A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. H ̈ogele, F. C. Simmel,
A. O. Govorov, T. Liedl, Nature, 483(7389), 311–314 (2012).
J. Wirth, F. Garwe, G. H ̈ahnel, A. Csaki, N. Jahr, O. Stranik, W. Paa, W. Fritzsche, Nano
Letters, 11(4), 1505–1511 (2011).
T. Song, H. Liang, Journal of the American Chemical Society, 134(26), 10803–10806
(2012).
J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, G. C. Schatz,
Journal of the American Chemical Society, 122(19), 4640–4650 (2000).
J. Liu, Y. Lu, Journal of the American Chemical Society, 125(22), 6642–6643 (2003).
W. Zhao, C. Yao, X. Luo, L. Lin, I. Hsing, Electrophoresis, 33(8), 1288–1291 (2012).
D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin,
Angewandte Chemie International Edition, 49(19), 3280–3294 (2010).
J. Xue, L. Shan, H. Chen, Y. Li, H. Zhu, D. Deng, Z. Qian, S. Achilefu, Y. Gu, Biosensors
and Bioelectronics (2012).
C. L. Choi, A. P. Alivisatos, Annual Review of Physical Chemistry, 61, 369–389 (2010).
D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, A. P. Alivisatos, Nano Letters,
(1),32–35 (2001).
W. Zhao, I. M. Hsing, Chemical Communications, 46(8), 1314–1316 (2010).
N. Borovok, E. Gillon, A. Kotlyar, Bioconjugate Chemistry, 23(5), 916–922 (2012).
M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, S. Bidault, Nano
Letters, 11(11), 5060–5065 (2011).
S. A. Claridge, H. W. Liang, S. R. Basu, J. M. J. Fr ́echet, A. P. Alivisatos, Nano Letters,
(4), 1202–1206 (2008).
H. Dachlika et al.
A. J. Mastroianni, S. A. Claridge, A. P. Alivisatos, Journal of the American Chemical
Society, 131(24), 8455–8459 (2009)