Self-Assembled DNA-Based Structures for Nanoelectronics
DOI:
https://doi.org/10.13052/same2245-4551.115Keywords:
Self-assembly, DNA nanostructures, electrical conductivity of DNA, carbon nanotubes, nanoparticles.Abstract
Recent developments in structural DNA nanotechnology have made com-
plex and spatially exactly controlled self-assembled DNA nanoarchitectures
widely accessible. The available methods enable large variety of differ-
ent possible shapes combined with the possibility of using DNA structures
as templates for high-resolution patterning of nano-objects, thus opening
up various opportunities for diverse nanotechnological applications. These
DNA motifs possess enormous possibilities to be exploited in realization of
molecular scale sensors and electronic devices, and thus, could enable fur-
ther miniaturization of electronics. However, there are arguably two main
issues on making use of DNA-based electronics: (1) incorporation of indi-
vidual DNA designs into larger extrinsic systems is rather challenging, and
(2) electrical properties of DNA molecules and the utilizable DNA templates
themselves, are not yet fully understood. This review focuses on the above
mentioned issues and also briefly summarizes the potential applications of
DNA-based electronic devices.
Downloads
References
N. C. Seeman, J. Theor. Biol., 99, 237–247 (1982).
N. R. Kallenbach, R.-I. Ma, N. C. Seeman, Nature, 305, 829–831 (1983).
E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature, 394, 539–544 (1998).
H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean, Science, 301, 1882–1884
(2003).
P. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson, E.
Winfree, J. Am. Chem. Soc., 126, 16344–16352 (2004).
V. Linko and J.J. Toppari
P. W. K. Rothemund, N. Papadakis, E. Winfree, PLoS Biol., 2, e424 (2004).
H. Yan, T. H. LaBean, L. Feng, J. H. Reif, Proc. Natl. Acad. Sci. U.S.A., 100, 8103–
(2003).
W. M. Shih, J. D. Quispe, G. F. Joyce, Nature, 427, 618–621 (2004).
P. W. K. Rothemund, Nature, 440, 297–302 (2006).
S. M. Douglas, H. Dietz, T. Liedl, B. H ̈ogberg, F. Graf, W. M. Shih, Nature, 459, 414–
(2009).
T. Liedl, B. H ̈ogberg, J. Tytell, D. E. Ingber, W. M. Shih, Nat. Nanotechnol., 5, 520–524
(2010).
H. Dietz, S. M. Douglas, W. M. Shih, Science, 325, 725–730 (2009).
D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, H. Yan, Science, 332, 342–346 (2011).
S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vasquez, G. M. Church, W.
M. Shih, Nucleic Acid Res., 37, 5001–5006 (2009).
C. E. Castro, F. Kilchherr, D.-N. Kim, E. Lin Shiao, T. Wauer, P. Wortmann, H. Dietz,
Nat. Meth., 8, 221–229 (2011).
D.-N. Kim, F. Kilchherr, H. Dietz, M. Bathe, Nucleic Acid Res., 40, 2862–2868 (2012).
A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, Nat. Nanotechnol., 6, 763–772 (2011).
T. Tørring, N. V. Voigt, J. Nangreave, H. Yan, K. V. Gothelf, Chem. Soc. Rev., 40,
–5646 (2011).
J.-P. J. Sobczak, T. G. Martin, T. Gerling, H. Dietz, Science, 338, 1458–1461 (2012).
B. Wei, M. Dai, P. Yin, Nature, 485, 623–626 (2012).
Y. Ke, L. L. Ong, W. M. Shih, P. Yin, Science, 338, 1177–1183 (2012).
X.-c. Bai, T. G. Martin, S. H. W. Scheres, H. Dietz, Proc. Natl. Acad. Sci. U.S.A., 109,
–20017 (2012).
H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. Goddard III, P. W. K.
Rothemund, E. Winfree, Nat. Nanotechnol., 5, 61–66 (2010).
N. V. Voigt, T. Tørring, A. Rotaru, M. F. Jacobsen, J. B. Ravnsbæk, R. Subramani, W.
Mamdouh, J. Kjems, A. Mokhir, F. Besenbacher, K. V. Gothelf, Nat. Nanotechnol., 5,
–203 (2010).
A. Kuzyk, K. T. Laitinen, P. T ̈orm ̈a, Nanotechnology, 20, 235305 (2009).
R. Schreiber, S. Kempter, S. Holler, V. Sch ̈uller, D. Schiffels, S. S. Simmel, P. C.
Nickels, T. Liedl, Small, 7, 1795–1799 (2011).
M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Chem. Rev.,
, 3736–3827 (2011).
A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. H ̈ogele, F. C. Simmel,
A. O. Govorov, T. Liedl, Nature, 483, 311–314 (2012).
S. J. Tan, M. J. Campolongo, D. Luo, W. Cheng, Nat. Nanotechnol., 6, 268–276 (2011).
R. Wang, C. Nuckolls, S. J. Wind, Angew. Chem. Int. Ed., 51, 11325–11327 (2012).
E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature, 391, 775–778 (1998).
J. Liu, Y. Geng, E. Pound, S. Gyawali, J. R. Ashton, J. Hickey, A. T. Woolley, J. N.
Harb, ACS Nano, 5, 2240–2247 (2011).
Y. Geng, J. Liu, E. Pound, S. Gyawali, J. N. Harb, A. T. Woolley, J. Mater. Chem., 21,
–12131 (2011).
International Technology Roadmap for Semiconductors 2011 Edition,
http://www.itrs.net/Links/2011ITRS/Home2011.htm
Self-Assembled DNA-Based Structures for Nanoelectronics 119
A. Cs ́aki, G. Maubach, D. Born, J. Reichert, W. Fritzsche, Single Mol., 3, 275–280
(2002).
K. Galatsis, K. L. Wang, M. Ozkan, C. S. Ozkan, Y. Huang, J. P. Chang, H. G.
Monbouquette, Y. Chen, P. Nealey, Y. Botros, Adv. Mater., 22, 769–778 (2010).
K. Sakakibara, J. P. Hill, K. Ariga, Small, 7, 1288–1308 (2011).
J. Ret`el, B. Hoebee, J. E. Braun, J. T. Lutgerink, E. van den Akker, A. H. Wanamarta,
H. Joenje, M. V. Lafleur, Mutat. Res., 299, 165–182 (1993).
C. Dekker, M. Ratner, Phys. World, 14, 29–33 (2001).
J. D. Slinker, N. B. Muren, S. E. Renfrew, J. K. Barton, Nat. Chem., 3, 228–233 (2011).
D. D. Eley, D. I. Spivey, Trans. Faraday Soc., 58, 411–415 (1962).
C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, N. J. Turro, J. K. Barton, Science,
, 1025–1029 (1993).
T. J. Meade, J. F. Kayyem, Angew. Chem. Int. Ed., 34, 352–354 (1995).
F. Lewis, T. Wu, Y. Zhang, R. Letsinger, S. Greenfield, M. Wasielewski, Science, 277,
–676 (1997).
E. M. Boon, J. K. Barton, Curr. Opin. Struct. Biol., 12, 320–329 (2002).
H.-W. Fink, C. Sch ̈onenberger, Nature, 398, 407–410 (1999).
D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature, 403, 635–638 (1999).
A. Y. Kasumov, M. Koziak, S. Gu ́eron, B. Reulet, V. T. Volkov, D. V. Klinov, H.
Bouchiat, Science, 291, 280–282 (2001).
X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, C. Nuckolls, Nat. Nanotech., 3, 163–
(2008).
E. Shapir, H. Cohen , A, Calzolari , C. Cavazzoni, D. A. Ryndyk , G. Cuniberti, A.
Kotlyar , R. Di Felice, D. Porath Nat. Mater., 7, 68–74 (2008).
R. G. Endres, D. L. Cox, R. R. P. Singh, Rev. Mod. Phys., 76, 195–214 (2004).
D. Porath, G. Cuniberti, R. Di Felice, Top Curr. Chem., 237, 183–228 (2004).
M. Di Ventra, M. Zwolak, Encycl. of Nanosci. and Nanotechnol., 2, 475–493 (2004).
K. W Hipps, Science, 294, 536–537 (2001).
X. Guo, J. P. Small, J. E. Klare, Y. Wang, M. S. Purewal, I. W. Tam, B. Hee Hong, R.
Caldwell, L. Huang, S. O’Brien, J. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim, C.
Nuckolls, Science, 311, 356–358 (2006).
J. M. Warman, M. P. deHaas, A Rupprecht, Chem. Phys. Lett., 249, 319–322 (1996).
S. Tuukkanen, A. Kuzyk, J. J. Toppari, V. P. Hyt ̈onen, T. Ihalainen, P. T ̈orm ̈a, Appl.
Phys. Lett., 87, 183102 (2005).
J. Berashevich, T. Chakraborty, J. Phys. Chem. B, 112, 14083–14089 (2008).
T. Kleine-Ostmann, C. J ̈ordens, K. Baaske, T. Weimann, M. H. de Angelis, M. Koch,
Appl. Phys. Lett., 88, 102102 (2006).
C. Yamahata, D. Collard, T. Takekawa, M. Kumemura, G. Hashiguchi, H. Fujita,
Biophys. J., 94, 63–70 (2008).
M. Briman, N. P. Armitage, E. Helgren, G. Gr ̈uner, Nano Lett., 4, 733–736 (2004).
A. Y. Kasumov, D. V. Klinov, P.-E. Roche, S. Gu ́eron, H. Bouchiat, Appl. Phys. Lett.,
, 1007 (2004).
Y.-T. Long, C.-Z. Li, H.-B. Kraatz, J. S. Lee, Biophys. J., 84, 3218–3225 (2003).
S. Liu, G. H. Clever, Y. Takezawa, M. Kaneko, K. Tanaka, X. Guo, M. Shionoya,
Angew. Chem. Int. Ed., 50, 8886–8890 (2011).
V. Linko and J.J. Toppari
E. Shapir, G. Brancolini, T. Molotsky, A. B. Kotlyar, R. Di Felice, D. Porath, Adv.
Mater., 23, 4290–4294 (2011).
A. B. Kotlyar, N. Borovok, T. Molotsky, H. Cohen, E. Shapir, D. Porath, Adv. Mater.,
, 1901–1905 (2005).
H. Cohen,T. Shapir, N. Borovok, T. Molotsky, R. Di Felice, A. B. Kotlyar, D. Porath,
Nano Lett., 7, 981–986 (2007).
E. Shapir, L. Sagiv, T. Molotsky, A. B. Kotlyar, R. Di Felice, D. Porath, J. Phys. Chem.
C, 114, 22079–22084 (2010).
P. B. Woiczikowski, T. Kubar, R. Guti ́errez, G. Cuniberti, M. Elstner, J. Chem. Phys.,
, 035103 (2010).
V. N. Soyfer, V. N. Potaman, in Triple-Helical Nucleic Acids (Springer, New York,
.
G. N. Parkinson, M. P. Lee, S. Neidle, Nature, 417, 876–880 (2002).
W. J. Qin, L. Y. Yung, Nucleic Acids Res., 35, e111 (2007).
N. Borovok, N. Iram, D. Zikich, J. Ghabboun, G.I. Livshits, D. Porath, A. B. Kotlyar,
Nucleic Acids Res., 36, 5050–5060 (2008).
J. R. Williamson, M. K. Raghuraman, T. R. Cech, Cell, 59, 871–880 (1989).
J. T. Davis, Angew. Chem., Int. Ed. Engl., 43, 668–698 (2004).
S. Lyonnais, O. Pi ́etrement, A. Chepelianski, S. Gu ́eron, L. Lacroix, E. Le Cam, J.-L.
Mergny, Nucl. Acids Symp. Ser., 52, 689–690 (2008).
I. Lubitz, A. B. Kotlyar, Bioconjugate Chem., 22, 482–487 (2011).
C. Leiterer, A. Cs ́aki, W. Fritzsche, Methods and Protocols, Series: Methods in Mo-
lecular Biology, 749, 141–150. Eds: Giampaolo Zuccheri and Bruno Samor`i (Humana
Press, Springer, 2011).
P. Alberti, J.-L. Mergny, Proc. Natl. Acad. Sci., 100, 1569–1573 (2003).
R. P. Fahlman, M. Hsing, C. Sporer-Tuhten, D. Sen, Nano Lett., 3, 1073–1078 (2003).
Z. S. Wu, C. R. Chen, G. L. Shen, R. Q. Yu, Biomater., 29, 2689–2696 (2008).
B. Ge, Y. C. Huang, D. Sen, H.-Z. Yu, Angew. Chem. Int. Ed., 49, 9965–9967 (2010).
X. Yang, D. Liu, P. Lu, Y. Zhangc, C. Yu, Analyst, 135, 2074–2078 (2010).
W. Fritzsche, T. A. Taton, Nanotechnology, 14, R63 (2003).
E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, M. F.
Lawrence, J. Phys. Chem. B, 101, 2980–2985 (1997).
J. Fritz, E. B. Cooper, S. Gaudet, P. K. Sorger, S. R. Manalis, Proc. Natl. Acad. Sci.
U.S.A., 99, 14142–14146 (2002).
Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams, Nano Lett., 4, 245–247
(2004).
E. E. Ferapontova, K. V Gothelf, Curr. Org. Chem., 15, 498–505 (2011).
S.-J. Park, T. A. Taton, C. A. Mirkin, Science, 295, 1503–1506 (2002).
R. Moeller and W. Fritzsche, IEE Proc.-Nanobiotechnol., 152, 47–51 (2005).
N. Mohanty, V. Berry, Nano Lett., 8, 4469–4476 (2008).
C. Dekker, Nat. Nanotechnol., 2, 209–215 (2007).
A. R. Hall, A. Scott, D. Rotem, K. K. Mehta, H. Bayley, C. Dekker, Nat. Nanotechnol.,
, 874–877 (2010).
N. A. W. Bell, C. R. Engst, M. Ablay, G. Divitini, C. Ducati, T. Liedl, U. F. Keyser,
Nano Lett., 12, 512–517 (2012).
R. Wei, T. G. Martin, U. Rant, H. Dietz, Angew. Chem. Int. Ed., 51, 4864–4867 (2012).
Self-Assembled DNA-Based Structures for Nanoelectronics 121
M. Langecker, V. Arnaut, T. G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, F. C.
Simmel, Science, 338, 932–936 (2012).
R. J. Kershner, L. D. Bozano, C. M. Micheel, A. M. Hung, A. R. Fornof, J. N. Cha,
C. T. Rettner, M. Bersani, J. Frommer, P. W. K. Rothemund, G. M. Wallraff, Nat.
Nanotechnol., 4, 557–561 (2009).
A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, J. N. Cha,
Nat. Nanotechnol., 5, 121–126 (2010).
H. Noh, A. M. Hung, J. N. Cha, Small, 7, 3021–3025 (2011).
A. E. Gerdon, S. S. Oh, K. Hsieh, Y. Ke, H. Yan, H. T. Soh, Small, 5, 1942–1946 (2009).
B. Ding, H. Wu, W. Xu, Z. Zhao, Y. Liu, H. Yu, H. Yan, Nano Lett., 10, 5065–5069
(2010).
E. Penzo, R. Wang, M. Palma, S. J. Wind, J. Vac. Sci. Technol. B, 29, 06F205 (2011).
F. A. Shah, K. N. Kim, M. Lieberman, G. H. Bernstein, J. Vac. Sci. Technol. B, 30,
(2012).
M. Palma, J. J. Abramson, A. A. Gorodetsky, E, Penzo, R. L. Gonzalez, Jr., M. P.
Sheetz, C. Nuckolls, J. Hone, S. J. Wind, J. Am. Chem. Soc., 133, 7656–7659 (2011).
A. C. Pearson, E. Pound, A. T. Woolley, M. R. Linford, J. N. Harb, R. C. Davis, Nano
Lett., 11, 1981–1987 (2011).
H. A. Pohl, J. Appl. Phys., 22, 869–871 (1951).
H. A. Pohl, in Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform
Electric Fields (Cambridge Univesity Press, Cambridge, UK, 1978).
M. P. Hughes, Nanotechnology, 11, 124–132 (2000).
P. J. Burke, Encycl. of Nanosci. and Nanotechnol., 6, 623–641 (2004).
L. Zheng, J. P. Brody, P. J. Burke, Biosens. Bioel., 20, 606–619 (2004).
A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen,
H. Hahn, R. Krupke, Nano. Lett., 7, 1556–1560 (2007).
R. Kretschmer, W. Fritzsche, Langmuir, 20, 11797-11801 (2004).
S. Kumar, Y.-K. Seo, G.-H. Kim, Appl. Phys. Lett., 94, 53104 (2009).
T. K. Hakala, V. Linko, A.-P. Eskelinen, J. J. Toppari, A. Kuzyk, P. T ̈orm ̈a, Small, 5,
–2686 (2009).
A. Kuzyk, Electrophoresis, 32, 2307–2313 (2011).
H. P. Schwan, G. Schwarz, J. Maczuk, H. Pauly, J. Phys. Chem., 66, 2626–2636 (1962).
S. Suzuki, T. Yamanashi, S. Tazawa, O. Kurosawa, M. Washizu, IEEE Trans. Ind. Appl.,
, 75–83 (1998).
S. Tuukkanen, A. Kuzyk, J. J. Toppari, H. H ̈akkinen, V. P. Hyt ̈onen, E. Niskanen, M.
Rinki ̈o, P. T ̈orm ̈a, Nanotechnology, 18, 295204 (2007).
R. H ̈olzel, IET Nanobiotechnol., 3, 28–45 (2009).
M. Washizu, O. Kurosawa, IEEE Trans. Ind. Appl., 26, 1165–1172 (1990).
R. H ̈olzel, F. F. Bier, IEE Proc.: Nanobiotechnol., 150, 47–53 (2003).
A. Kuzyk, J. J. Toppari, P. T ̈orm ̈a, Methods and Protocols, Series: Methods in Molecular
Biology, 749, 223–234. Eds: Giampaolo Zuccheri and Bruno Samor`i (Humana Press,
Springer, 2011).
A. Kuzyk, B. Yurke, J. J. Toppari, V. Linko, P. T ̈orm ̈a, Small, 4, 447–450 (2008).
V. Linko, S.-T. Paasonen, A. Kuzyk, P. T ̈orm ̈a, J. J. Toppari, Small, 5, 2382–2386
(2009).
V. Linko and J.J. Toppari
V. Linko, J. Leppiniemi, S.-T. Paasonen, V. P. Hyt ̈onen, J. J. Toppari, Nanotechnology,
, 275610 (2011).
V. Linko, J. Leppiniemi, B. Shen, E. Niskanen, V. P. Hyt ̈onen, J. J. Toppari, Nanoscale,
, 3788–3792 (2011).
Y. Eichen, E. Braun, U. Sivan, G. Ben-Yoseph, Acta Polym., 49, 663–670 (1998).
A. D. Bobadilla, E. P. Bellido, N. L. Rangel, H. Zhong, M. L. Norton, A. Sinitskii, J.
M. Seminario, J. Chem. Phys., 130, 171101 (2009).
E. P. Bellido, A. D. Bobadilla, N. L. Rangel, H. Zhong, M. L. Norton, A. Sinitskii, J.
M. Seminario, Nanotechnology, 20, 175102 (2009).
P. O’Neill, P. W. K. Rothemund, A. Kumar, D. K. Fygenson, Nano Lett., 6, 1379–1383
(2006).
H. Cohen, C. Nogues, R. Naaman, D. Porath, Proc. Natl. Acad. Sci, U.S.A., 102,
–11593 (2005).
A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, J. M. Xu,
Phys. Rev. Lett., 86, 3670–3673 (2001).
B. Xu, N. J. Tao, Science, 301, 1221–1223 (2003).
D. H. Ha, H. Nham, K.-H. Yoo, H. So, H.-Y. Lee, T. Kawai, Chem. Phys. Lett., 355,
–409 (2002).
E. Barsoukov, J. R. MacDonald, in Impedance Spectroscopy: Theory, Experiment, and
Applications, Second Edition (Wiley, Hoboken, New Jersey, 2005).
J. Wang, Phys. Rev. B, 78, 245304 (2008).
B. Xu, P. Zhang, X. Li, N. Tao, Nano Lett., 4, 1105–1108 (2004).
N. Lu, H. Pei, Z. Ge, C. R. Simmons, H. Yan, C. Fan, J. Am. Chem. Soc., 134, 13148–
(2012).
J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science,
, 622–625 (2000).
S. Lyonnais, C.-L. Chung, L. Goux-Capes, C. Escud ́e, O. Pi ́etrement, S. Baconnais, E.
Le Cam, J.-P. Bourgoin, A. Filoramo, Chem. Comm., 6, 683–685 (2009).
P. F. Xu, H. Noh, J. H. Lee, J. N. Cha, Phys. Chem. Chem. Phys., 13, 10004–10008
(2011).
A. D. Bobadilla, J. M. Seminario, J. Phys. Chem. C, 115, 3466–3474 (2011).
M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E.
Richardson, N. G. Tassi, Nat. Mater., 2, 338–342 (2003).
X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature, 460, 250–253 (2009).
X. Tu, A. R. Hight Walker, C. Y. Khripin, M. Zheng, J. Am. Chem. Soc., 133, 12998–
(2011).
K. Keren, R. S. Berman, E. Buchstab, U. Sivan, E. Braun, Science, 302, 1380–1382
(2003).
K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Science, 297,
–75 (2002).
A.-P. Eskelinen, A. Kuzyk, T. K. Kaltiaisenaho, M. Y. Timmermans, A. G. Nasibulin,
E. I. Kauppinen, P. T ̈orm ̈a, Small, 7, 746–750 (2011).
Y. Sannohe, M. Endo, Y. Katsuda, K. Hidaka, H, Sugiyama, J. Am. Chem. Soc., 132,
–16313 (2010).
D. N. Selmi, R. J. Adamson, H. Attrill, A. D. Goddard, R. J. C. Gilbert, A. Watts, A. J.
Turberfield, Nano Lett., 11, 657–660 (2011).
Self-Assembled DNA-Based Structures for Nanoelectronics 123
M. J. Berardi, W. M. Shih, S. C. Harrison, J. J. Chou, Nature, 476, 109–113 (2011).
J. Wirth, F. Garwe, G. H ̈ahnel, A. Cs ́aki, N. Jahr, O. Stranik, W. Paa, W. Fritzsche, Nano
Lett., 11, 1505–1511 (2011).